Skip to main content
Log in

Beam Dynamics Simulation in the LINAC-100 Accelerator Driver for the DERICA Project

  • Charged Particle Accelerators for Nuclear Technologies
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of uranium ion beam dynamics simulation in front-end and superconducting sections of the accelerator-driver LINAC-100 for the new rare isotope facility DERICA (JINR, Dubna) are presented. The optimum parameters are chosen for the buncher accelerator with radiofrequency quadrupole focusing (RFQ) for uranium ion beam acceleration from the ion source up to the energy of 570 keV/nucleon. LINAC-100 modular superconducting part layout for uranium beam acceleration from 3 to 100 MeV/nucleon is obtained. The energies for the stripper section installation are chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Grigorenko, B. Yu. Sharkov, A. S. Fomichev, et al., Phys. Usp. 62 (7), 675 (2019). https://doi.org/10.3367/UFNe.2018.07.038387

    Article  ADS  Google Scholar 

  2. SPIRAL2 Detailed Design Study, Part 10, GANIL, 2005. http://pro.ganil-spiral2.eu/spiral2/what-is-spiral2/apd. Accessed June 24, 2019.

  3. J. Wei et al., in Proceedings of International Conference on Heavy Ion Accelerator Technology HIAT’15 (2015), p. 6.

  4. Status and Future Plan of Rare Isotope Science Project. https://risp.ibs.re.kr/eng/orginfo/intro_project.do. Accessed June 24, 2019.

  5. G. Bisoffi et al., in Proceedings of IPAC’18 (2018), p. 1035.

  6. M. Marchetto, S. Kiy, R. E. Laxdal, et al., in Proceedings of International Conference on Heavy Ion Accelerator Technology HIAT’15 (2015), 175.

  7. L. V. Grigorenko, A. S. Fomichev, V. S. Duybkov, et al., in Proceedings of the 61st ICFA ABDW on High-Intensity and High-Brightness Hadron Beams HB2018 (2018), p. 220.

  8. E. S. Masunov and S. M. Polozov, Vopr. At. Nauki Tekh., Ser. Yad. Fiz. Issled. 3 (47), 119 (2006).

    Google Scholar 

  9. E. S. Masunov and S. M. Polozov, Nucl. Instrum. Methods Phys. Res., Sect. A 558, 184 (2006).

    Article  ADS  Google Scholar 

  10. E. S. Masunov and S. M. Polozov, Yad. Fiz. Inzhin 1, 159 (2010).

    Google Scholar 

  11. S. M. Polozov, W. A. Barth, T. Kulevoy, and S. Yaramyshev, in Proceedings of the 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High Brightness and High Power Hadron Beams, HB’2016 (2016), p. 188.

  12. S. Yaramyshev et al., Nucl. Instrum. Methods Phys. Res., Sect. A 558 (90) (2006). https://doi.org/10.1016/j.nima.2005.11.018

  13. W. A. Barth, F. D. Dziuba, T. Kulevoy, Y. Lozeev, S. M. Polozov, and S. Yaramyshev, in Proceedings of the RuPAC’16 (2016), p. 267.

  14. W. A. Barth, T. Kulevoy, Y. Lozeev, S. M. Polozov, and S. Yaramyshev, in Proceedings of the IPAC’17 (2017), p. 1333.

  15. W. Barth et al., Phys. Rev. ST AB 18, 050102 (2015).

    ADS  Google Scholar 

  16. S. Yaramyshev et al., Phys. Rev. ST AB 18 (5) (2015).

  17. W. Barth et al., Phys. Rev. ST AB 18 (5) (2015).

  18. I. M. Kapchinsky, Theory of Linear Resonant Accelerators: Dynamics of Particles (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  19. E. S. Masunov and A. V. Samoshin, Tech. Phys. 55, 1028 (2010).

    Article  Google Scholar 

  20. A. V. Samoshin, Vopr. At. Nauki Tekh., Ser. Yad. Fiz. Issled. 4 (80), 78 (2012).

    Google Scholar 

  21. S. M. Polozov and A. V. Samoshin, Vopr. At. Nauki Tekh., Ser. Yad. Fiz. Issled. 3 (91), 143 (2014).

    Google Scholar 

  22. E. S. Masunov and A. V. Samoshin, At. Energy 108, 141 (2010).

    Article  Google Scholar 

  23. E. S. Masunov and A. V. Samoshin, Vopr. At. Nauki Tekh., Ser. Yad. Fiz. Issled. 49, 158 (2008).

    Google Scholar 

  24. W. Barth et al., Phys. Rev. ST AB 18, 040101 (2015). https://doi.org/10.1103/PhysRevSTAB.18.040101

    ADS  Google Scholar 

  25. W. Barth et al., Nucl. Instrum. Methods Phys. Res., Sect. A 577, 211 (2007). https://doi.org/10.1016/j.nima.2007.02.054

    Article  ADS  Google Scholar 

  26. W. Barth et al., Phys. Rev. ST Accel. Beams 20, 050101 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.050101

    Article  ADS  Google Scholar 

  27. W. Barth et al., Phys. Rev. ST AB 18, 050102 (2015). https://doi.org/10.1103/PhysRevSTAB.18.050102

    ADS  Google Scholar 

  28. H. Kuboki et al., Phys. Rev. ST Accel. Beams 13, 093501 (2010).

    Article  ADS  Google Scholar 

  29. H. Okuno et al., Phys. Rev. ST Accel. Beams 14, 033503 (2011).

    Article  ADS  Google Scholar 

  30. H. Imao et al., in Proceedings of the Conference on Cyclotrons, 2013, p. 265.

  31. F. Marti, in Proceedings of the Conference LINAC’12 (2012), p. 1050.

  32. J. Glatz, private commun.

  33. V. P. Shevelko, P. Scharrer, W. Barth, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 428, 56 (2018). https://doi.org/10.1016/j.nimb.2018.04.04

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Polozov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2019, published in Yadernaya Fizika i Inzhiniring, 2019, Vol. 10, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozeeva, T.A., Lozeev, Y.Y., Polozov, S.M. et al. Beam Dynamics Simulation in the LINAC-100 Accelerator Driver for the DERICA Project. Phys. Atom. Nuclei 82, 1519–1526 (2019). https://doi.org/10.1134/S1063778819110127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819110127

Keywords

Navigation