Skip to main content
Log in

First-Principle Calculation of Thermoelectric Coefficients for the Nanocluster Lattices of Noble Metals

  • Modeling of Nanostructures
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of calculating the thermal electromotive force for a crystalline state and a model lattice of nanoclusters of noble transition metals Ag, Au, and Pd are presented. The electron structure was calculated by the method of density functional theory (DFT) with the plane-wave pseudopotential and the generalized gradient approximation of the density functional with consideration for relativistic effects and noncollinear magnetism. The electron transport coefficients were found by analyzing the electron structure with the use of the semiclassic solution of the kinetic Boltzmann equation in the constant relaxation time approximation. The obtained results on the temperature dependence of the thermal electromotive force demonstrated quantitative coincidence with the tabular values within a temperature range of 200–500 K for crystalline Au and 200–400 K for Ag and Pd. At 300 K, the precision of calculated results attained 4% for Au. For the simplified model of the nanostructured material representing lattices of Me13 nanoclusters, the thermal electromotive force was revealed to grow by an order of magnitude in comparison with the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Borman, P. V. Borisyuk, O. S. Vasiliev, M. A. Pushkin, V. N. Tronin, I. V. Tronin, V. I. Troyan, N. V. Skorodumova, and B. Johansson, JETP Lett. 86, 393 (2007).

    Article  ADS  Google Scholar 

  2. P. V. Borisyuk, A. V. Krasavin, V. I. Troyan, et al., Appl. Surf. Sci. 336, 359 (2015).

    Article  ADS  Google Scholar 

  3. H. Alama and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  4. Y. Pei, H. Wang, and G. J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  Google Scholar 

  5. G. Plascencia-Villa et al., J. Phys. Chem. C 120, 8950 (2016).

    Article  Google Scholar 

  6. C. R. Bell et al., APL Mater. 2, 012109 (2014).

    Article  ADS  Google Scholar 

  7. K. Jagello et al., Struct. Chem. 28, 635 (2017).

    Article  Google Scholar 

  8. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  9. A. DalCorso, Comput. Mater. Sci. 95, 337 (2014).

    Article  Google Scholar 

  10. U. N. Kurelchuk et al., Mater. Today Proc. 4, 12343 (2017).

    Article  Google Scholar 

  11. G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  ADS  Google Scholar 

  12. G. K. H. Madsen, J. Carrete, and M. J. Verstraete, arXiv:1712.07946 [cond-mat.mtrl-sci].

  13. J. E. Martin et al., J. Phys. Chem. B 106, 971 (2002).

    Article  Google Scholar 

  14. M. J. Kanehara, J. Am. Chem. Soc. 125, 8708 (2003).

    Article  Google Scholar 

  15. Q. Zhang et al., ACS Nano 3, 139 (2009).

    Article  Google Scholar 

  16. M. P. Pileni, Phys. Chem. 12, 11821 (2010).

    Google Scholar 

  17. M. Atis et al., Phys. Scr. 75, 111 (2007).

    Article  ADS  Google Scholar 

  18. N. Badri et al., J. Phys. Chem. C 120, 13787 (2016).

    Article  Google Scholar 

  19. NIST. Interatomic Potentials Repository Project. www.ctcms.nist.gov/potentials/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. N. Kurel’chuk.

Additional information

Original Russian Text © U.N. Kurel’chuk, O.S. Vasil’ev, P.V. Borisyuk, 2018, published in Yadernaya Fizika i Inzhiniring, 2018, Vol. 9, No. 1, pp. 99–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurel’chuk, U.N., Vasil’ev, O.S. & Borisyuk, P.V. First-Principle Calculation of Thermoelectric Coefficients for the Nanocluster Lattices of Noble Metals. Phys. Atom. Nuclei 81, 1664–1667 (2018). https://doi.org/10.1134/S1063778818110108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818110108

Keywords

Navigation