Skip to main content
Log in

High-Precision Method for Revealing Hidden Substances by Means of Tagged Neutrons

  • Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A new method of employing A(n, n′γ)A reactions of inelastic tagged-neutron scattering is proposed for revealing hidden substances. In contrast to the well-known method where substances are identified by measuring the spectrum of gamma rays, the new method consists in identifying substances by measuring the spectrum of neutrons. The neutron energy is measured by the time-of-flight method via detecting a (γ, n) pair and invoking the parameters of tagged neutrons. The detection of a neutron in a pair with a photon is also a factor that reduces the rate of accumulation of useful events. As is shown in the present study, however, the method in question possesses a number of important special features owing to which it boasts high precision and efficiency, as well as the ability of revealing a broad range of elements and hidden substances of small volume. A numerical simulation of both methods is performed. It is shown that the required time of measurements within the proposed method is one order of magnitude shorter, which makes it possible to circumvent that main difficulty encountered in applying the known method and associated with a low resource and a high cost of neutron sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Ussery and C. L. Hollas, Report No. LA-12847-MS (Los Alamos Natl. Laboratory, Los Alamos, 1994).

    Google Scholar 

  2. V. D. Aleksandrov, E. P. Bogolubov, O. V. Bochkarev, L. A. Korytko, V. I. Nazarov, Yu. G. Polkanov, V. I. Ryzhkov, and T. O. Khasaev, Appl. Radiat. Isotop. 63, 537 (2005).

    Article  Google Scholar 

  3. A. Beyerle, J. P. Hurley, and L. Tunnell, Nucl. Instrum. Methods Phys. Res., Sect. A 299, 458 (1990).

    Article  ADS  Google Scholar 

  4. V. M. Bystritsky, V. V. Gerasimov, N. I. Zamyatin, E. V. Zubarev, V. G. Kadyshevsky, A. P. Kobzev, A. R. Krylov, A. A. Nozdrin, V. L. Rapatsky, Yu. N. Rogov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, A. N. Sissakian, and V. M. Slepnev, Phys. Part. Nucl. Lett. 6, 505 (2009).

    Article  Google Scholar 

  5. V. M. Bystritsky, N. I. Zamyatin, E. V. Zubarev, V. L. Rapatsky, Yu. N. Rogov, I. V. Romanov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, M. V. Safonov, V. M. Slepnev, and A. V. Filippov, Phys. Part. Nucl. Lett. 10, 442 (2013).

    Article  Google Scholar 

  6. V. Yu. Aleksakhin, V. M. Bystritsky, N. I. Zamyatin, E. V. Zubarev, A. V. Krasnoperov, V. L. Rapatsky, A. V. Rogachev, Yu. N. Rogov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, and V. M. Slepnev, Phys. Part. Nucl. Lett. 10, 860 (2013).

    Article  ADS  Google Scholar 

  7. D. Sudac, D. Matika, K. Nada, J. Obhodaš, and V. Valkovic, Appl. Radiat. Isotop. 70, 1070 (2012).

    Article  Google Scholar 

  8. C. Carasco, B. Perot, S. Bernard, A. Mariani, J.-L. Szabo, G. Sannie, Th. Roll, V. Valkovic, D. Sudac, G. Viesti, M. Lunardon, C. Bottosso, D. Fabris, G. Nebbia, S. Pesente, S. Moretto, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 588, 397 (2008).

    Article  ADS  Google Scholar 

  9. C. Carasco, B. Perot, A. Mariani, W. El Kanawati, V. Valkovic, D. Sudac, and J. Obhodas, Nucl. Instrum. Methods Phys. Res., Sect. A 619, 432 (2010).

    Article  ADS  Google Scholar 

  10. V. Yu. Alekhakhin, V. M. Bystritsky, N. I. Zamyatin, E. V. Zubarev, A. V. Krasnoperov, V. L. Rapatsky, Yu. N. Rogov, A. B. Sadovsky, A. V. Salamatin, R. A. Salmin, M. G. Sapozhnikov, V. M. Slepnev, S. V. Khabarov, E. A. Razinkov, O. G. Tarasov, and G. M. Nikitin, Nucl. Instrum. Methods Phys. Res., Sect. A 785, 9 (2015).

    Article  ADS  Google Scholar 

  11. Kh. E. Bagdasaryan, V. F. Batyaev, S. G. Belichenko, R. R. Bestaev, A. V. Gavryuchenkov, and M. D. Karetnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 784, 412 (2015).

    Article  ADS  Google Scholar 

  12. D. Sudac, K. Nad, J. Obhodas, and V. Valkovic, Radiat. Meas. 59, 193 (2013).

    Article  Google Scholar 

  13. V. Valkovic, D. Sudac, J. Obhodas, C. Eleon, B. Perot, C. Carasco, G. Sannié, K. Boudergui, V. Kondrasovs, G. Corre, S. Normand, R. Woo, and J. M. Bourbotte, Nucl. Instrum. Methods Phys. Res., Sect. A 703, 133 (2013).

    Article  ADS  Google Scholar 

  14. B. Perot, W. El Kanawati, C. Carasco, C. Eleon, V. Valkovic, D. Sudac, J. Obhodas, and G. Sannie, Appl. Radiat. Isotop. 70, 1186 (2012).

    Article  Google Scholar 

  15. C. Eleon, B. Perot, C. Carasco, D. Sudac, J. Obhodas, and V. Valkovic, Nucl. Instrum. Methods Phys. Res., Sect. A 629, 220 (2011).

    Article  ADS  Google Scholar 

  16. W. El Kanawati, B. Perot, C. Carasco, C. Eleon, V. Valkovic, D. Sudac, J. Obhodas, and G. Sannie, Appl. Radiat. Isotop. 69, 732 (2011).

    Article  Google Scholar 

  17. A. Donzella, I. Bodini, A. Zenoni, A. Fontana, B. Perot, S. Bernard, C. Carasco, A. Mariani, D. Sudac, and V. Valkovic, Nucl. Instrum. Methods Phys. Res., Sect. B 261, 291 (2007).

    Article  ADS  Google Scholar 

  18. S. Pesente, M. Lunardon, G. Nebbia, G. Viesti, D. Sudac, and V. Valkovic, Appl. Radiat. Isotop. 65, 1322 (2007).

    Article  Google Scholar 

  19. C. Zeitnitz and T. A. Gabriel, Nucl. Instrum. Methods Phys. Res., Sect. A 349, 106 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bakalyarov.

Additional information

Original Russian Text © A.M. Bakalyarov, G.V. Muradian, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 6, pp. 592–602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakalyarov, A.M., Muradian, G.V. High-Precision Method for Revealing Hidden Substances by Means of Tagged Neutrons. Phys. Atom. Nuclei 81, 645–655 (2018). https://doi.org/10.1134/S1063778818050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818050022

Navigation