Skip to main content
Log in

Supernova Explosion Mechanism with the Neutrinos and the Collapse of the Rotation Core

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collapse supernovae. In this work the multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SNII and for setting up observations to register possible high-energy (≲10 MeV) neutrinos from the supernova. In compare with the previous work describing a new multidimensional gas dynamics method with neutrino transport we investigate the role of the rotation in the convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Nuovo Cimento Riv. Ser. 39, 1 (2016); arXiv: 1508.00785.

    ADS  Google Scholar 

  2. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).

    Article  ADS  Google Scholar 

  3. V. S. Imshennik and D. K. Nadezhin, Astrophys. Space Phys. Rev. 8, 1 (1989).

    ADS  Google Scholar 

  4. H. A. Bethe, Rev.Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  5. H.-T. Janka, K. Langanke, A. Marek, G. Marti´nez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); astro-ph/0612072.

    Article  ADS  Google Scholar 

  6. V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1973).

    ADS  Google Scholar 

  7. D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).

    Article  ADS  Google Scholar 

  8. S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).

    Article  ADS  Google Scholar 

  9. L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. Lett. 673, L43 (2008); arXiv: 0710.5789.

    Google Scholar 

  10. F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).

    Article  ADS  Google Scholar 

  11. B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010); arXiv: 1001.4841.

    Article  ADS  Google Scholar 

  12. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).

    Article  ADS  Google Scholar 

  13. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).

    Article  ADS  Google Scholar 

  14. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).

    Article  ADS  Google Scholar 

  15. A. Mezzacappa, M. Liebendörfer, O. E. Messer, W.R. Hix, ·F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); astro-ph/0005366.

    Article  ADS  Google Scholar 

  16. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.

    Article  ADS  Google Scholar 

  17. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); astroph/9404024.

    Article  ADS  Google Scholar 

  18. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); astro-ph/9506061.

    Article  ADS  Google Scholar 

  19. J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.

    Article  ADS  Google Scholar 

  20. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015), ArXiv: 1403.6115.

    Article  ADS  Google Scholar 

  21. S. M. Couch and C. D. Ott, Astrophys. J. Lett. 778, L7 (2013), arXiv: 1309.2632.

    Google Scholar 

  22. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431.

    Google Scholar 

  23. S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399.

    Article  ADS  Google Scholar 

  24. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.

    Article  ADS  Google Scholar 

  25. V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).

    ADS  Google Scholar 

  26. V. M. Suslin, M. Y. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).

    ADS  Google Scholar 

  27. I. V. Baikov, V. M. Suslin, V.M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    Article  ADS  Google Scholar 

  28. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    Article  ADS  Google Scholar 

  29. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    Article  ADS  Google Scholar 

  30. A. G. Aksenov and V. M. Chechetkin, Phys. At. Nucl. 81, 128 (2018).

    Article  Google Scholar 

  31. V. M. Chechetkin and A. G. Aksenov, Astron. Rep. 62, 251 (2018).

    Article  ADS  Google Scholar 

  32. A. G. Aksenov, Comput.Math. Math. Phys. 55, 1752 (2015).

    Article  MathSciNet  Google Scholar 

  33. G. Vereshchagin and A. Aksenov, Relativistic Kinetic Theory With Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).

    Book  MATH  Google Scholar 

  34. A. G. Aksenov, Astron. Lett. 24, 482 (1998).

    ADS  Google Scholar 

  35. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  36. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  37. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, JETP Lett. 45, 589 (1987).

    ADS  Google Scholar 

  38. R. Schaeffer, Y. Declais, and S. Jullian, Nature (London, U.K.) 330, 142 (1987).

    Article  ADS  Google Scholar 

  39. P. Ledoux, Astrophys. J. 105, 305 (1947).

    Article  ADS  MathSciNet  Google Scholar 

  40. G. S. Bisnovatyj-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  41. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).

    Article  ADS  Google Scholar 

  42. V. Aksenov, A. G. Tishkin, and V. Chechetkin, Math. Model. 30 (9), 51 (2018) (in Russian).

    Google Scholar 

  43. A. G. Aksenov, Astron. Lett. 25, 185 (1999).

    ADS  Google Scholar 

  44. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.

    Article  ADS  Google Scholar 

  45. A.G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).

    ADS  Google Scholar 

  46. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aksenov.

Additional information

The article is published in the original.

Paper presented at the Third Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus on April 23–27, 2018. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, A.G., Chechetkin, V.M. Supernova Explosion Mechanism with the Neutrinos and the Collapse of the Rotation Core. Astron. Rep. 62, 834–839 (2018). https://doi.org/10.1134/S1063772918120156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918120156

Navigation