Skip to main content
Log in

Chiral Effects in Nucleus–Nucleus Collisions: Experimental Review

  • Elementary Particles and Fields Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A survey of experimental results obtained by studying chiral effects in nucleus–nucleus collisions at various energies is presented. The entire body of these experimental results confirms indirectly a topologically nontrivial structure of the QCD vacuum and the possibility of a local violation of discrete QCD symmetries at finite temperature. A significant decrease in the asymmetry of the distribution of electrically charged particles with respect to the reaction plane in heavy-ion collisions in the energy range of \(\sqrt {sNN} \) GeVmay be indicative of a possible transition to the region where hadron states dominate over quark–gluon degrees of freedom in a mixed phase formed in nucleus–nucleus collisions at intermediate energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Polikarpov, Phys. Usp. 38, 591 (1995)

    Article  ADS  Google Scholar 

  2. I. Horváth, S. J. Dong, T. Draper, F. X. Lee, K. F. Liu, N. Mathur, H. B. Thacker, and J. B. Zhang, Phys. Rev. D 68, 114505 (2003)

    Article  ADS  Google Scholar 

  3. V. A. Okorokov and E. V. Sandrakova, Univ. J. Phys. Appl. 1, 196 (2013).

    Google Scholar 

  4. V. A. Okorokov, Int. J. Mod. Phys. E 22, 1350041 (2013).

    Article  ADS  Google Scholar 

  5. T. D. Lee, Phys. Rev. D 8, 1226 (1973)

    Article  ADS  Google Scholar 

  6. T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974).

    Article  ADS  Google Scholar 

  7. J. Rafelski and B. Müller, Phys. Rev. Lett. 36, 517 (1976)

    Article  ADS  Google Scholar 

  8. B. Cheng and A. V. Olinto, Phys. Rev. D 50, 2421 (1994).

    Article  ADS  Google Scholar 

  9. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A 803, 227 (2008).

    Article  ADS  Google Scholar 

  10. V. A. Okorokov, arXiv: 0908.2522 [nucl-th].

  11. D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 80, 034028 (2009).

    Article  ADS  Google Scholar 

  12. V. A. Okorokov, Yad. Fiz. Inzhin. 4, 805 (2013).

    Google Scholar 

  13. Y. Zhong, C.-B. Yang, X. Cai, and S.-Q. Feng, Adv. High Energy Phys. 2014, 193039 (2014).

    Article  Google Scholar 

  14. V. Okorokov and P. Parfenov, J. Phys.: Conf. Ser. 668, 012129 (2016); 675, 022021 (2016).

    Google Scholar 

  15. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).

    Article  MathSciNet  Google Scholar 

  16. V. V. Skokov, A. Yu. Illarionov, and V. D. Toneev, Int. J.Mod. Phys. A 24, 5925 (2009).

    Article  ADS  Google Scholar 

  17. V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin, Phys. Rev. C 83, 054911 (2011).

    Article  ADS  Google Scholar 

  18. W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012).

    Article  ADS  Google Scholar 

  19. D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, Prog. Part.Nucl. Phys. 88, 1 (2016).

    Article  ADS  Google Scholar 

  20. STAR Collab. (L. Adamczyk et al.), Phys. Rev. Lett. 118, 012301 (2017).

    Article  ADS  Google Scholar 

  21. D. T. Son and A. R. Zhitnitsky, Phys. Rev. D 70, 074018 (2004)

    Article  ADS  Google Scholar 

  22. M. A. Metlitski and A. R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005).

    Article  ADS  Google Scholar 

  23. X.-G. Huang and J. Liao, Phys. Rev. Lett. 110, 232302 (2013)

    Article  ADS  Google Scholar 

  24. Y. Jiang, X.-G. Huang and J Liao, Phys. Rev. D 91, 045001 (2015).

    Article  ADS  Google Scholar 

  25. D. E. Kharzeev and D. T. Son, Phys. Rev. Lett. 106, 062301 (2011).

    Article  ADS  Google Scholar 

  26. G. M. Newman, J. High Energy Phys. 0601, 158 (2006).

    Article  ADS  Google Scholar 

  27. D. E. Kharzeev and H. U. Yee, Phys. Rev. D 83, 085007 (2011).

    Article  ADS  Google Scholar 

  28. Y. Jiang, X.-G. Huang and J. Liao, Phys. Rev. D 92, 071501(R) (2015).

    Article  ADS  Google Scholar 

  29. S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).

    Article  Google Scholar 

  30. STAR Collab. (B. I. Abelev et al.), Phys. Rev. Lett. 103, 251601 (2009); Phys. Rev. C 81, 054908 (2010).

    Article  ADS  Google Scholar 

  31. G. Wang, Nucl. Phys. A 904–905, 248c (2013).

    Article  Google Scholar 

  32. ALICE Collab. (B. Abelev et al.), Phys. Rev. Lett. 110, 012301 (2013).

    Article  ADS  Google Scholar 

  33. STAR Collab. (L. Adamczyk et al.), Phys. Rev. Lett. 113, 052302 (2014).

    Article  ADS  Google Scholar 

  34. S. A. Voloshin, Phys. Rev. C 70, 057901 (2004).

    Article  ADS  Google Scholar 

  35. Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Phys. Rev. Lett. 107, 052303 (2011)

    Article  ADS  Google Scholar 

  36. E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. D 83, 085003 (2011).

    Article  ADS  Google Scholar 

  37. V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J. Thomas, S. Voloshin, G. Wang, and H.-U. Yee, arXiv: 1608.00982 [nucl-th].

  38. J. Cleymans, H. Oeschler, K. Redlich and S. Wheaton, Phys. Rev. C 73, 034905 (2006).

    Article  ADS  Google Scholar 

  39. STAR Collab. (L. Adamczyk et al.), Phys. Rev. C 88, 064911 (2013).

    Article  ADS  Google Scholar 

  40. V. A. Okorokov in Proceedings of the 30th International Workshop on High Energy Physics: Particle and Astroparticle Physics, Gravitation and Cosmology: Predictions, Observations and New Projects (World Scientific, Singapore, 2015), p. 189.

    Google Scholar 

  41. A. Kuhlman and U. Heinz, Phys. Rev. C 72, 037901 (2005)

    Article  ADS  Google Scholar 

  42. S. A. Voloshin, Phys. Rev. Lett. 105, 172301 (2010).

    Article  ADS  Google Scholar 

  43. STAR Collab. (L. Adamczyk et al.), Phys. Rev. Lett. 115, 222301 (2015).

    Article  ADS  Google Scholar 

  44. J. Bloczynski, X.-G. Huang, X. Zhang, and J. Liao, Phys. Lett. B 718, 1529 (2013)

    Article  ADS  Google Scholar 

  45. S. Chatterjee and P. Tribedy, Phys. Rev. C 92, 011902(R) (2015).

    Article  ADS  Google Scholar 

  46. V. A. Okorokov, Doctoral (Phys. Math.) Dissertation (Nat. Res. Nucl. Univ.MEPhI,Moscow, 2013).

    Google Scholar 

  47. STAR Collab. (L. Adamczyk et al.), Phys. Rev. C 89, 044908 (2014).

    Article  ADS  Google Scholar 

  48. STAR Collab. (L. Adamczyk et al.), Phys. Rev. Lett. 114, 252302 (2015).

    Article  ADS  Google Scholar 

  49. STAR Collab. (J. Adam et al.), Phys. Rev. C 93, 044903 (2016).

    Article  ADS  Google Scholar 

  50. F. Zhao, Nucl. Phys. A 931, 746 (2014).

    Article  ADS  Google Scholar 

  51. V. A. Okorokov, Eur. Phys. J. A 52, 255 (2016)

    Article  ADS  Google Scholar 

  52. P. V. Buividovich, Eur. Phys. J. A 52, 263 (2016)

    Article  ADS  Google Scholar 

  53. V. Toneev, O. Rogachevsky, and V. Voronyuk, Eur. Phys. J. A 52, 264 (2016)

    Article  ADS  Google Scholar 

  54. A. Bzdak, V. Koch, and J. Liao, Eur. Phys. J. A 52, 265 (2016)

    Article  ADS  Google Scholar 

  55. E. J. Ferrer, and V. de la Incera, Eur. Phys. J. A 52, 266 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Okorokov.

Additional information

Original Russian Text © V.A. Okorokov, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 6, pp. 652–659.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorokov, V.A. Chiral Effects in Nucleus–Nucleus Collisions: Experimental Review. Phys. Atom. Nuclei 80, 1133–1140 (2017). https://doi.org/10.1134/S1063778817060163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817060163

Navigation