Skip to main content

Advertisement

Log in

Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant α over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both α and the average m q of the u and d current quark masses, and which makes explicit the dependence on mass number A and atomic number Z. (Recent model independent results on hadronic \({\sigma}\)-terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivity to changes in the pion mass \({M_\pi}\) of a single nucleon potential determined by an in-medium chiral perturbation theory (\({\chi}\)PT) calculation which includes virtual \({{\Delta}}\)-excitations. Subject to some reasonable assumptions about low-energy constants, we confirm that the m q -contribution to resonance shifts is enhanced by a factor of 10 or so relative to the \({\alpha}\)-term and deduce that the Oklo data for Sm imply that \({|m_q({\rm Oklo})- m_q({\rm now})| \lesssim 10^{-9}m_q({\rm now})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P.A.M.: The cosmological constants. Nature 139, 323 (1937)

    Article  ADS  MATH  Google Scholar 

  2. Farmelo G.: The Strangest Man. Basic Books, New York (2009)

    MATH  Google Scholar 

  3. Uzan J.-P.: Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011)

    Article  ADS  Google Scholar 

  4. Webb, J.K., Murphy, M.T., Flambaum, V.V., Dzuba, V.A., Barrow, J.D., Churchill, C.W., Prochaska, J.X., Wolfe, A.M.: Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001)

  5. Webb, J.K., King, J.A., Murphy, M.T., Flambaum, V.V., Carswell, R.F., Bainbridge, M.B.: Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011)

  6. Berengut J.C., Flambaum V.V.: Manifestations of a spatial variation of fundamental constants in atomic and nuclear clocks, Oklo, meteorites, and cosmological phenomena. Europhys. Lett. 97, 20006 (2012)

    Article  Google Scholar 

  7. Herndon J.M.: Terracentric nuclear fission georeactor: background, basis, feasibility, structure, evidence and geophysical implications. Curr. Sci. 106, 528–541 (2014)

    Google Scholar 

  8. Davis E.D., Gould C.R., Sharapov E.I.: Oklo reactors and implications for nuclear science. Int. J. Mod. Phys. E 23, 1430007 (2014)

    Article  ADS  Google Scholar 

  9. Müller A., Davis E.D., Harney H.-L.: Parity violation in compound-nucleus reactions. Phys. Rev. Lett. 65, 1329–1331 (1990)

    Article  ADS  Google Scholar 

  10. Davis E.D., Hartmann U.: Nuclear sensitivity to time-reversal non-invariance: traditional detailed balance. Ann. Phys. (N.Y.) 211, 334–386 (1991)

    Article  ADS  Google Scholar 

  11. Shlyakhter A.I.: Direct test of the constancy of fundamental nuclear constants. Nature 264, 340 (1976)

    Article  ADS  Google Scholar 

  12. Chiba T.: The constancy of the constants of nature: updates. Prog. Theor. Phys. 126, 993–1019 (2011)

    Article  ADS  MATH  Google Scholar 

  13. Onegin M.S., Yudkevich M.S., Gromin E.A.: Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis. Mod. Phys. Lett. A 27, 1250232 (2012)

    Article  ADS  Google Scholar 

  14. Flambaum V.V., Wiringa R.B.: Enhanced effect of quark mass variation in 229Th and limits from Oklo data. Phys. Rev. C 79, 034302 (2009)

    Article  ADS  Google Scholar 

  15. Kaiser N., Fritsch S., Weise W.: Chiral dynamics and nuclear matter. Nucl. Phys. A 697, 255–276 (2002)

    Article  ADS  MATH  Google Scholar 

  16. Kaiser N., Fritsch S., Weise W.: Nuclear mean field from chiral pion–nucleon dynamics. Nucl. Phys. A 700, 343–358 (2002)

    Article  ADS  MATH  Google Scholar 

  17. Fritsch S., Kaiser N., Weise W.: Chiral approach to nuclear matter: role of two-pion exchange with virtual delta-isobar excitation. Nucl. Phys. A 750, 259–293 (2005)

    Article  ADS  Google Scholar 

  18. Damour T., Dyson F.J.: The Oklo bound on the time variation of the fine-structure constant revisited. Nucl. Phys. B 480, 37–54 (1996)

    Article  ADS  Google Scholar 

  19. Dmitriev V.F., Flambaum V.V.: Limits on cosmological variation of quark masses and strong interaction. Phys. Rev. D 67, 063513 (2003)

    Article  ADS  Google Scholar 

  20. Brockmann R., Weise W.: Spin-orbit coupling in a relativistic Hartree model for finite nuclei. Phys. Rev. C 16, 1282–1284 (1977)

    Article  ADS  Google Scholar 

  21. Kaiser N., Gerstendörfer S., Weise W.: Peripheral NN-scattering: role of delta-excitation, correlated two-pion and vector meson exchange. Nucl. Phys. A 637, 395–420 (1998)

    Article  ADS  Google Scholar 

  22. Finelli P., Kaiser N., Vretenar D., Weise W.: Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry. Nucl. Phys. A 735, 440–481 (2004)

    Article  ADS  Google Scholar 

  23. Finelli P., Kaiser N., Vretenar D., Weise W.: Relativistic nuclear energy density functional constrained by low-energy QCD. Nucl. Phys. A 770, 1–31 (2006)

    Article  ADS  Google Scholar 

  24. Epelbaum E., Hammer H.-W., Meißner U.-G.: Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)

    Article  ADS  Google Scholar 

  25. Beane S.R., Savage M.J.: Variation of fundamental couplings and nuclear forces. Nucl. Phys. A 713, 148–164 (2003)

    Article  ADS  Google Scholar 

  26. Beane S.R., Savage M.J.: The quark-mass dependence of two-nucleon systems. Nucl. Phys. A 717, 91–103 (2003)

    Article  ADS  Google Scholar 

  27. Epelbaum E., Meißner U.-G., Glöckle W.: Nuclear forces in the chiral limit. Nucl. Phys. A 714, 535–574 (2003)

    Article  ADS  MATH  Google Scholar 

  28. Bedaque P.F., Luu T., Platter L.: Quark mass variation constraints from big bang nucleosynthesis. Phys. Rev. C 83, 045803 (2011)

    Article  ADS  Google Scholar 

  29. Berengut J.C., Epelbaum E., Flambaum V.V., Hanhart C., Meißner U.-G., Nebreda J., Peláez J.R.: Varying the light quark mass: impact on the nuclear force and big bang nucleosynthesis. Phys. Rev. D 87, 085018 (2013)

    Article  ADS  Google Scholar 

  30. Epelbaum E., Krebs H., Lähda T.A., Lee D., Meißner U.-G.: Viability of carbon-based life as a function of the quark mass. Phys. Rev. Lett. 110, 112502 (2013)

    Article  ADS  Google Scholar 

  31. Lutz M., Friman B., Appel C.: Saturation from nuclear pion dynamics. Phys. Lett. B 474, 7–14 (2000)

    Article  ADS  Google Scholar 

  32. Bogner S.K., Furnstahl R.J., Schwenk A.: From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65, 94–147 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, E.D. Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter. Few-Body Syst 56, 431–437 (2015). https://doi.org/10.1007/s00601-014-0909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0909-0

Keywords

Navigation