Skip to main content
Log in

Investigation of Ternary Fission of 25298 Cf Using Three-Cluster and Unified Ternary Fission Models

  • Nuclei Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Using three-cluster and unified ternary fission models, the ternary fission of 98252Cf is studied. We applied collinear and equatorial configurations to study the ternary fission of 98252Cf when the third fragment is 310Li. The nuclear potential energy in the three-cluster model and unified ternary fission model is calculated respectively, using Yukawa plus exponential and proximity formalisms. The relative yields of different fragmentation channels are calculated. Our results reveal that the ternary fragmentation potential of the three fragments and the relative yields depend on the configuration of three fragments and usedmodel. Two models predict that the lowest driving potential and highest relative yield take place for the fragment combination 51132Sb + 44110Ru + 310Li. Also, the values of driving potential and relative yield are not equal in the three-clustermodel and unified ternary fission model. For fragment combination 51132Sb + 44110Ru + 310Li, the relative yield based on the three-cluster model in collinear configuration is maximum, whereas the unified ternary fission model in equatorial configuration predicts the lowest relative yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Swiatecki, in Proceedings of the 2nd United National International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 (United Nations, Geneva, 1958), Vol. 15, p. 651.

    Google Scholar 

  2. C. Wagemans and A. J. Deruytter, Nucl. Phys. A194, 657 (1972).

    Article  ADS  Google Scholar 

  3. J. P. Theobald, P. Heeg, and M. Mutterer, Nucl. Phys. A 502, 343 (1989).

    Article  ADS  Google Scholar 

  4. S. Vermote, C.Wagemans, O. Serot, J. Heyse, J. van Gils, T. Soldner, and P. Geltenbort, Nucl. Phys. A 806, 1 (2008).

    Article  ADS  Google Scholar 

  5. D.N. Poenaru, B. Dobrescu, W. Greiner, J.H. Hamilton, and A. V. Ramayya, J. Phys. G26, L97 (2000).

    Article  ADS  Google Scholar 

  6. S. Thakur, R. Kumar, K. R. Vijayaraghavan, and M. Balasubramaniam, Int. J. Mod. Phys. E 22, 1350014 (2013).

    Article  ADS  Google Scholar 

  7. G. Farwell, E. Segrè, and C. Wiegand, Phys. Rev. 71, 327 (1947).

    Article  ADS  Google Scholar 

  8. R. K. Choudhury and V. S. Ramamurthy, Phys. Rev. C 18, 2213 (1978).

    Article  ADS  Google Scholar 

  9. M. Ismail, W. M. Seif, A. Y. Ellithi, and A. S. Hashem, Can. J. Phys. 91, 401 (2013).

    Article  ADS  Google Scholar 

  10. K. P. Santhosh, Sreejith Krishnan, and B. Priyanka, Int. J. Mod. Phys. E 24, 1550001 (2015).

    Article  ADS  Google Scholar 

  11. K. P. Santhosh, Sreejith Krishnan, and B. Priyanka, Phys. Rev. C 91, 044603 (2015).

    Article  ADS  Google Scholar 

  12. K. P. Santhosh et al., J. Phys. G 41, 105108 (2014).

    Article  ADS  Google Scholar 

  13. D. N. Poenaru, W. Greiner, J. H. Hamilton, A. V. Ramayya, E. Hourany, and R. A. Gherghescu, Phys. Rev. C 59, 3457 (1999).

    Article  ADS  Google Scholar 

  14. V. M. Strutinsky, N. Ya. Lyashchenko, and N. A. Popov, Nucl. Phys. 46, 639 (1963).

    Article  Google Scholar 

  15. H. Diehl and W. Greiner, Nucl. Phys. A 229, 29 (1974).

    Article  ADS  Google Scholar 

  16. G. Royer, F. Haddad, and J. Mignen, J. Phys. G 18, 2015 (1992).

    Article  ADS  Google Scholar 

  17. K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011).

    Article  ADS  Google Scholar 

  18. K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009).

    Article  ADS  Google Scholar 

  19. W. von Oertzen, Y. V. Pyatkov, and D. Kamanin, Acta Phys. Polon. B 44, 447 (2013).

    Article  ADS  Google Scholar 

  20. A. Sandulescu, A. Florescu, F. Cârstoiu, and W. Greiner, J. Phys. G 23, L7 (1997).

    Article  ADS  Google Scholar 

  21. A. Sandulescu, F. Cârstoiu, S. Misicu, A. Florescu, A. V. Ramayya, J. H. Hamilton, and W. Greiner, J. Phys. G 24, 181 (1998).

    Article  ADS  Google Scholar 

  22. A. Sӑndulescu, F. Carstoiu, I. Bulboacӑ, and W. Greiner, Phys. Rev. C 60, 044613 (1999).

    Article  ADS  Google Scholar 

  23. J. Błocki, J. Randrup, W. J. Świątecki, and C. F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).

    Article  ADS  Google Scholar 

  24. K. R. Vijayaraghavan, W. von Oertzen, and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012).

    Article  ADS  Google Scholar 

  25. K. Manimaran and M. Balasubramaniam, J. Phys. G 37, 045104 (2010).

    Article  ADS  Google Scholar 

  26. W. D. Myers and W. J. Swiatecki, Ark. Fys. 36, 343 (1967).

    Google Scholar 

  27. S. S. Malik and Raj K. Gupta, Phys. Rev. C 39, 1992 (1989).

    Article  ADS  Google Scholar 

  28. K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naderi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, D., Moradian, A. & Zargooshi, M. Investigation of Ternary Fission of 25298 Cf Using Three-Cluster and Unified Ternary Fission Models. Phys. Atom. Nuclei 80, 1073–1079 (2017). https://doi.org/10.1134/S1063778817060138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817060138

Navigation