Skip to main content
Log in

Near-threshold J/ψ-meson photoproduction on nuclei

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

On the basis of the first-collision model that relies on the nuclear spectral function and which includes incoherent processes involving charmonium production in proton–nucleon collisions, the photoproduction of J/ψ mesons on nuclei is considered at energies close to the threshold for their production on a nucleon. The absorption of final J/ψ mesons, their formation length, and the binding and Fermi motion of target nucleons are taken into account in this model along with the effect of the nuclear potential on these processes. The A dependences of the absolute and relative charmonium yields are calculated together with absolute and relative excitation functions under various assumptions on the magnitude of the cross section for J/ψN absorption, the J/ψ-meson formation length, and their inmedium modification. It is shown that, at energies above the threshold, these features are virtually independent of the formation length and the change in the J/ψ-meson mass in nuclear matter but are rather highly sensitive to the cross section for J/ψN interaction. The calculations performed in the present study can be used to determine the unknown cross section for J/ψ-meson absorption in nuclei from a comparison of their results with data expected from experiments in the Hall C of the CEBAF (USA) facility upgraded to the energy of 12 GeV. It is also shown that the absolute and relative excitation functions for J/ψ mesons in photon–nucleus reactions at subthreshold energies are sensitive to the change in the meson mass and, hence, carry information about the properties of charmonium in nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cassing and E. L. Bratkovskaya, Nucl. Phys. A 623, 570 (1997).

    Article  ADS  Google Scholar 

  2. D. Kharzeev et al., Z. Phys. C 74, 307 (1997).

    Article  Google Scholar 

  3. W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

    Article  ADS  Google Scholar 

  4. R. Vogt, Phys. Rep. 310, 197 (1999).

    Article  ADS  Google Scholar 

  5. C.-G. Duan, J.-C. Xu, and L.-H. Song, Eur. Phys. J. C 67, 173 (2010).

    Article  ADS  Google Scholar 

  6. NA38 Collab. (C. Baglin et al.), Phys. Lett. B 345, 617 (1995)

    Article  Google Scholar 

  7. NA38 Collab. (M. C. Abreu et al.), Phys. Lett. B 423, 207 (1998); Phys. Lett. B 444, 516 (1998); Phys. Lett. B 449, 128 (1999); Phys. Lett. B 466, 408 (1999).

    Article  ADS  Google Scholar 

  8. NA50 Collab. (M. C. Abreu et al.), Phys. Lett. B 410, 337 (1997)

    Article  ADS  Google Scholar 

  9. NA50 Collab. (L. Ramello et al.), Nucl. Phys. A 638, 261c (1998)

    Article  Google Scholar 

  10. NA50 Collab. (M. C. Abreu et al.), Phys. Lett. B 477, 28 (2000); Phys. Lett. B 499, 85 (2001); Phys. Lett. B 521, 195 (2001)

    Article  Google Scholar 

  11. NA50 Collab. (P. Bordalo et al.), Nucl. Phys. A 698, 127 (2002)

    Article  Google Scholar 

  12. NA50 Collab. (B. Alessandro et al.), Eur. Phys. J. C 33, 31 (2004); Eur. Phys. J. C 39, 335 (2005); Eur. Phys. J. C 48, 329 (2006); Eur. Phys. J. C 49, 559 (2007).

    Article  ADS  Google Scholar 

  13. NA60 Collab. (R. Arnaldi et al.), Phys. Rev. Lett. 99, 132302 (2007); Nucl. Phys. A 783, 261 (2007); Nucl. Phys. A 830, 345c (2009); Eur. Phys. J. C 59, 607 (2009)

    Article  ADS  Google Scholar 

  14. E. Scomparin (for the NA60 Collab.), Nucl. Phys. A 830, 239c (2009); NA60 Collab. (R. Arnaldi et al.), arXiv: 1004.5523 [nucl-ex].

    Article  ADS  Google Scholar 

  15. PHENIX Collab. (S. S. Adler et al.), Phys. Rev. C 69, 014901 (2004)

    Article  ADS  Google Scholar 

  16. J. L. Nagle (for the PHENIX Collab.), Nucl. Phys. A 715, 252 (2003)

    Article  ADS  Google Scholar 

  17. PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 232301 (2007); arXiv: 1010. 1246 [nucl-ex]; Phys. Rev. Lett. 101, 122301 (2008); Phys. Rev. C 77, 024912 (2008); Phys. Rev. C 79, 059901(E) (2009); Phys. Rev. C 84, 054912 (2011); A. Lebedev (for the PHENIX Collab.), arXiv: 1509.03579 [nucl-ex]; PHENIX Collab. (A. Adare et al.), arXiv: 1509.05380 [nucl-ex]

    Article  ADS  Google Scholar 

  18. STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 80, 041902(R) (2009)

    Article  ADS  Google Scholar 

  19. STAR Collab. (L. Adamczyk et al.), Phys. Rev. C 90, 024906 (2014).

    Article  ADS  Google Scholar 

  20. E. Scomparin (for the ALICE Collab.), arXiv: 1211. 1623 [nucl-ex]; ALICE Collab. (B. Abelev et al.), Phys. Rev. Lett. 109, 072301 (2012); Phys. Lett. B 718, 1273 (2013)

    Article  ADS  Google Scholar 

  21. ALICE Collab. (E. Abbas et al.), Eur. Phys. J. C 73, 2617 (2013)

    Article  ADS  Google Scholar 

  22. ALICE Collab. (B. Abelev et al.), J. High Energy Phys. 1402, 073 (2014); Phys. Rev. Lett. 113, 232504 (2014); M. Leoncino (for the ALICE Collab.), arXiv: 1410.1761 [hep-ex]; S. G. Weber (on behalf of the ALICE Collab.), arXiv: 1509.02793 [hep-ex].

    ADS  Google Scholar 

  23. HERA-B Collab. (I. Abt et al.), Eur. Phys. J. C 60, 525 (2009).

    Article  ADS  Google Scholar 

  24. FNAL E866 Collab. (M. J. Leith et al.), Phys. Rev. Lett. 84, 3256 (2000).

    Article  Google Scholar 

  25. Y.-Q. Ma et al., arXiv: 1503.07772 [hep-ph].

  26. M. Bedjidian et al., hep-ph/0311048.

  27. J. P. Lansberg et al., arXiv: 0807.3666 [hep-ph].

  28. C. S. dos Santos and M. V. T. Machado, arXiv: 1411.7918 [hep-ph].

  29. C. M. Ko, B. Zhang, X. N. Wang, and X. F. Zhang, Phys. Lett. B 444, 237 (1998).

    Article  ADS  Google Scholar 

  30. P. Braun-Munzinger and K. Redlich, Eur. Phys. J. C 16, 519 (2000).

    Article  ADS  Google Scholar 

  31. R. L. Thews et al., Phys. Rev. C 63, 054905 (2001).

    Article  ADS  Google Scholar 

  32. L. Grandchamp and R. Rapp, Nucl. Phys. A 709, 415 (2002).

    Article  ADS  Google Scholar 

  33. A. Andronic et al., J. Phys. G 38, 124081 (2011).

    Article  ADS  Google Scholar 

  34. B. Ducloué, T. Lappi, and H. Mäntysaari, Phys. Rev. D 91, 114005 (2015).

    Article  ADS  Google Scholar 

  35. A. K. Chaudhuri, nucl-th/0212046.

  36. A. K. Chaudhuri, nucl-th/0307029.

  37. O. Linnyk, E. L. Bratkovskaya, and W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008).

    Article  ADS  Google Scholar 

  38. L. V. Bravina et al., arXiv: 0902.4664 [hep-ph].

  39. B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, arXiv: 1012.5648 [hep-ph].

  40. C. Pen˜ a and D. Blaschke, arXiv: 1302.0831 [hep-ph].

  41. T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).

    Article  ADS  Google Scholar 

  42. K. Tsushima et al., Phys. Rev. C 83, 065208 (2011).

    Article  ADS  Google Scholar 

  43. S. J. Brodsky and G. A. Miller, Phys. Lett. B 412, 125 (1997).

    Article  ADS  Google Scholar 

  44. R. Molina, C. Xiao, and E. Oset, Phys. Rev. C 86, 014604 (2012).

    Article  ADS  Google Scholar 

  45. R. Rapp, D. Blaschke, and P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010)

    Article  ADS  Google Scholar 

  46. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  47. Z. Conesa del Valle et al., Nucl. Phys. B: Proc. Suppl. 214, 3 (2011).

    Article  ADS  Google Scholar 

  48. B. Knapp et al., Phys. Rev. Lett. 34, 1040 (1975).

    Article  ADS  Google Scholar 

  49. T. Nash et al., Phys. Rev. Lett. 36, 1233 (1976).

    Article  ADS  Google Scholar 

  50. R. L. Anderson et al., Phys. Rev. Lett. 38, 263 (1977).

    Article  ADS  Google Scholar 

  51. M. E. Binkley et al., Phys. Rev. Lett. 48, 73 (1982).

    Article  ADS  Google Scholar 

  52. M. D. Sokoloff et al., Phys. Rev. Lett. 57, 3003 (1986).

    Article  ADS  Google Scholar 

  53. NA14 Collab. (R. Barate et al.), Z. Phys. C 33, 505 (1987).

    Article  Google Scholar 

  54. E687 Collab. (P. L. Frabetti et al.), Phys. Lett. B 316, 197 (1993).

    Article  Google Scholar 

  55. B. Gittelman et al., Phys. Rev. Lett. 35, 1616 (1975).

    Article  ADS  Google Scholar 

  56. U. Camerini et al., Phys. Rev. Lett. 35, 483 (1975).

    Article  ADS  Google Scholar 

  57. P. Bosted et al., Phys. Rev. C 79, 015209 (2009).

    Article  ADS  Google Scholar 

  58. G. R. Farrar et al., Phys. Rev. Lett. 64, 2996 (1990).

    Article  ADS  Google Scholar 

  59. V. Guzey, M. Strikman, and M. Zhalov, Eur. Phys. J. C 74, 2942 (2014).

    Article  ADS  Google Scholar 

  60. B. Z. Kopeliovich and B. G. Zakharov, Phys. Rev. D 44, 3466 (1991).

    Article  ADS  Google Scholar 

  61. O. Benhar et al., Phys. Rev. Lett. 69, 1156 (1992).

    Article  ADS  Google Scholar 

  62. C. Gerschel and J. Hüfner, Z. Phys. C 56, 171 (1992).

    Article  ADS  Google Scholar 

  63. J. Hüfner, B. Kopeliovich, and J. Nemchik, Phys. Lett. B 383, 362 (1996).

    Article  ADS  Google Scholar 

  64. J. Hüfner, B. Kopeliovich, and A. Zamolodchikov, Z. Phys. A 357, 113 (1997).

    Article  ADS  Google Scholar 

  65. Yu. P. Ivanov et al., Phys. Rev. C66, 024903 (2002).

    ADS  Google Scholar 

  66. P. P. Bhaduri et al., Phys. Rev. C 84, 054914 (2011).

    Article  ADS  Google Scholar 

  67. P. P. Bhaduri and S. Gupta, Phys. Rev. C 88, 045205 (2013).

    Article  ADS  Google Scholar 

  68. Yu. T. Kiselev, E. Ya. Paryev, and Yu. M. Zaitsev, Int. J. Mod. Phys. E 23, 1450085 (2014).

    Article  ADS  Google Scholar 

  69. S. J. Brodsky and A. H. Mueller, Phys. Lett. B 206, 685 (1988).

    Article  ADS  Google Scholar 

  70. G. R. Farrar et al., Nucl. Phys. B 345, 125 (1990).

    Article  ADS  Google Scholar 

  71. L. Gerland et al., Phys. Lett. B 619, 95 (2005).

    Article  ADS  Google Scholar 

  72. L. Gerland, nucl-th/0507059.

  73. A. B. Larionov et al., Phys. Rev. C 87, 054608 (2013).

    Article  ADS  Google Scholar 

  74. Ye. S. Golubeva et al., Eur. Phys. J. A17, 275 (2003).

    Article  ADS  Google Scholar 

  75. S. J. Brodsky et al., Phys. Lett. B 498, 23 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  76. M. A. Braun and B. Vlahovic, Phys. Lett. B 594, 105 (2004).

    Article  ADS  Google Scholar 

  77. F. Wilczek, Lect. Notes Phys. 814, 1 (2011); PANDA Collab., arXiv: 0903.3905 [hep-ex].

    Article  ADS  Google Scholar 

  78. P. Bosted et al., https://www.jlab.org/exp_prog/proposals/07/PR12-07-106.pdf.

  79. A. B. Kaidalov and P. E. Volkovitsky, Phys. Rev. Lett. 69, 3155 (1992).

    Article  ADS  Google Scholar 

  80. S. J. Brodsky, I. A. Schmidt, and G. F. de Teramond, Phys. Rev. Lett. 64, 1011 (1990).

    Article  ADS  Google Scholar 

  81. F. Klingl et al., Phys. Rev. Lett. 82, 3396 (1999).

    Article  ADS  Google Scholar 

  82. A. Hayashigaki, Prog. Theor. Phys. 101, 923 (1999).

    Article  ADS  Google Scholar 

  83. A. Sibirtsev and M. B. Voloshin, Phys. Rev. D 71, 076005 (2005).

    Article  ADS  Google Scholar 

  84. G. Krein, A. W. Thomas, and K. Tsushima, Phys. Lett. B 697, 136 (2011).

    Article  ADS  Google Scholar 

  85. S. V. Efremov and E. Ya. Paryev, Eur. Phys. J. A 1, 99 (1998).

    Article  ADS  Google Scholar 

  86. E. Ya. Paryev, Eur. Phys. J. A 7, 127 (2000).

    Article  ADS  Google Scholar 

  87. R. L. Anderson, in Proceedings of the International Conference on Production of Particles with New Quantum Numbers, Wisconsin Univ., Madison, Apr. 22–24, 1976, SLAC-PUB-1741 (1976).

    Google Scholar 

  88. G. Farrar et al., Phys. Rev. Lett. 61, 686 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Kiselev.

Additional information

Original Russian Text © E.Ya. Paryev, Yu.T. Kiselev, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 1, pp. 70–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paryev, E.Y., Kiselev, Y.T. Near-threshold J/ψ-meson photoproduction on nuclei. Phys. Atom. Nuclei 80, 67–76 (2017). https://doi.org/10.1134/S1063778817010148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817010148

Navigation