Skip to main content
Log in

Analysis of isomeric ratios for medium-mass nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the 86,87Y, 94,95,96,99Tc, and 44Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Danagulyan, G. O. Oganesyan, T. M. Bakhshiyan, and G. V. Martirosyan, Phys. Atom. Nucl. 79, 326 (2016).

    Article  ADS  Google Scholar 

  2. T. M. Bakhshiyan, Phys. At. Nucl. 79, 38 (2016).

    Article  Google Scholar 

  3. A. Koning, S. Hilaire, and S. Goriely, TALYS 1.4._A Nuclear Reaction Program (Petten, Netherlands, 2011). http://www.talys.eu/.

    Google Scholar 

  4. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014). https://www-nds.iaea.org/exfor/exfor.htm.

    Article  ADS  Google Scholar 

  5. M. Herman, R. Capote, M. Sin, et al., Report INDC(NDS)-0603, BNL-101378-2013 (Vienna, Austria, 2013). https://www-nds.iaea.org/indexmeeting-crp/EmpireWorkshop2013/docs/empire-3.2.pdf.

    Google Scholar 

  6. R. Capote, M. Herman, P. Obložinský, et al., Nucl. Data Sheets 110, 3107 (2009). https://wwwnds. iaea.org/RIPL-3/.

    Article  ADS  Google Scholar 

  7. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/.

  8. S. S. Ghugre, B. Kharraja, U. Garg, et al., Phys. Rev. C 61, 024302 (1999).

    Article  ADS  Google Scholar 

  9. H. J. Li, Z. G. Xiao, S. J. Zhu, et al., Phys. Rev. C 91, 054314 (2015).

    Article  ADS  Google Scholar 

  10. F. Rösch, S. M. Qaim, and G. Stöcklin, Radiochim. Acta 61, 1 (1993).

    Article  Google Scholar 

  11. V. N. Levkovskii, Cross Sections for the Activation of Medium-Mass (A = 40–100) Nuclides by Intermediate-Energy (E = 10–50 MeV) Protons and Alpha Particles (Inter-Vesy, Moscow, 1991) [in Russian].

    Google Scholar 

  12. C. Rusu, C. A. Ur, D. Bucurescu, et al., Nucl. Phys. A 818, 1 (2009).

    Article  ADS  Google Scholar 

  13. R. Schwengner, J. Reif, H. Schnare, et al., Phys. Rev. C 57, 2892 (1998).

    Article  ADS  Google Scholar 

  14. E. A. Skakun, V. G. Batij, Yu. N. Rakivnenko, and O. A. Rastrepin, Sov. J. Nucl. Phys. 46, 17 (1987).

    Google Scholar 

  15. Yu. Yu. Zhuravlev, P. P. Zarubin, and A. A. Kolozhvari, Bull. Russ. Acad. Sci.: Phys. 58, 798 (1994).

    Google Scholar 

  16. F. Rösch and S. M. Qaim, Radiochim. Acta 62, 115 (1993).

    Article  Google Scholar 

  17. J. J. Hogan, Phys. Rev. C 6, 810 (1972).

    Article  ADS  Google Scholar 

  18. A. Celler, X. Hou, F. Bénard, and T. Ruth, Phys.Med. Biol. 56, 5469 (2011).

    Article  Google Scholar 

  19. Z. Randa and K. Svoboda, J. Inorg. Nucl. Chem. 38, 2289 (1976).

    Article  Google Scholar 

  20. F. Tárkányi, F. Ditrói, S. Takács, et al., Nucl. Instrum. Methods Phys. Res. B 280, 45 (2012).

    Article  Google Scholar 

  21. F. Tárkányi, F. Ditrói, S. Takács, et al., Nucl. Instrum. Methods Phys. Res. B 280, 1 (2012).

    Article  Google Scholar 

  22. M. Izumo, H. Matsuoka, T. Sorita, et al., Appl. Radiat. Isot. 42, 297 (1991).

    Article  Google Scholar 

  23. K. Gagnon, F. Bénard, M. Kovacs, et al., Nucl. Med. Biol. 38, 907 (2011).

    Article  Google Scholar 

  24. M. C. Lagunas-Solar, N. X. Zeng, I. Mirshad, and T. Grey-Morgan, Trans. Am. Nucl. Soc. 74, 137 (1996).

    Google Scholar 

  25. S. Takács, A. Hermanne, F. Ditrói, et al., Nucl. Instrum. Methods Phys. Res. B 347, 26 (2015).

    Article  ADS  Google Scholar 

  26. S. Manenti, U. Holzwarth, M. Loriggiola, et al., Appl. Radiat. Isot. 94, 344 (2014).

    Article  Google Scholar 

  27. B. Scholten, R. M. Lambrecht, M. Cogneau, et al., Appl. Radiat. Isot. 51, 69 (1999).

    Article  Google Scholar 

  28. S. Takács, Z. Szycs, F. Tárkányi, et al., J. Radianal. Nucl. Chem. 257, 195 (2003).

    Article  Google Scholar 

  29. S. Krajewski, I. Cydzik, K. Abbas, et al., Radiochim. Acta 101, 333 (2013).

    Article  Google Scholar 

  30. L. W. Mitchell et al., Nucl. Phys. A 380, 318 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Hovhannisyan.

Additional information

Original Russian Text © A.S. Danagulyan, G.H. Hovhannisyan, T.M. Bakhshiyan, I.A. Kerobyan, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 5, pp. 461–467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danagulyan, A.S., Hovhannisyan, G.H., Bakhshiyan, T.M. et al. Analysis of isomeric ratios for medium-mass nuclei. Phys. Atom. Nuclei 79, 679–685 (2016). https://doi.org/10.1134/S1063778816050070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816050070

Navigation