Skip to main content
Log in

Effect of Electric Current on the Spin Polarization of Electrons in Materials with Nonuniform Magnetization

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonequilibrium magnetization (spin polarization) of conducting electrons moving in materials with a nonuniform magnetization distribution is analyzed theoretically. Both stationary states and transient processes occurring upon the current switching on and off are considered. Because of the coordinate dependence of the magnetization, the passage of current leads to a deviation of the charge carrier magnetization from its equilibrium value. Based on a simple model for nonequilibrium magnetization, the expression describing the coordinate dependence of the nonequilibrium magnetization is obtained in terms of the drift length and the spin diffusion length. It is shown that the effect is the strongest when the coordinate derivative of the magnetization is maximal. Various examples of media with a nonuniform magnetization are considered, including periodic structures such as spin density waves and artificial superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Spin Physics in Semiconductor, Ed. by M. I. Dyakonov (Springer, Berlin, 2008).

    Google Scholar 

  2. Spin Current, Ed. by S. Maekawa, S. O. Valenzuelo, S. Saitoh, and T. Kimura (Oxford Univ. Press, Oxford, 2017).

    Google Scholar 

  3. Spintronics for Next Generation Innovative Devices, Ed. by K. Sato and E. Saitoh (Wiley, New York, 2015).

    Google Scholar 

  4. J. Bass and W. P. Pratt, Jr., J. Phys.: Condens. Matter 19, 183201 (2007).

  5. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Dieny, P. Pirro, and B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020).

  6. M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).

    Article  ADS  Google Scholar 

  7. X. H. Lou, C. Adelmann, S. A. Cooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowwell, Nat. Phys. 3, 197 (2007).

    Article  Google Scholar 

  8. O. M. J. van’t Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson, and B. T. Jonker, Nat. Nanotechnol. 7, 737 (2012).

    Article  ADS  Google Scholar 

  9. Y. Fujita, M. Yamada, S. Yamada, T. Kanashima, K. Sawano, and K. Hamaya, Phys. Rev. B 94, 245302 (2016).

  10. N. A. Viglin, V. V. Ustinov, S. O. Demokritov, A. O. Shorikov, N. G. Bebenin, V. M. Tsvelikhovskaya, T. N. Pavlov, and E. I. Patrakov, Phys. Rev. B 96, 235303 (2017).

  11. N. A. Viglin and N. G. Bebenin, Phys. Met. Metallogr. 119, 1289 (2018).

    Article  ADS  Google Scholar 

  12. I. Appelbaum, Phil. Trans. R. Soc. A 369, 3554 (2011).

    Article  ADS  Google Scholar 

  13. A. I. Nikitchenko and N. A. Pertsev, Phys. Rev. Appl. 14, 034022 (2020).

  14. E. A. Vilkov, G. M. Mikhailov, S. A. Nikitov, A. R. Safin, M. V. Logunov, V. N. Korenivskii, S. G. Chigarev, and L. A. Fomin, J. Exp. Theor. Phys. 127, 1022 (2018).

    Article  ADS  Google Scholar 

  15. M. Baumgartner, K. Garello, J. Mendil, C. O. Avci, E. Grimaldi, C. Murer, J. Feng, M. Gabureac, C. Stamm, Y. Acremann, S. Finizio, S. Wintz, J. Raabe, and P. Gambardella, Nat. Nanotechnol. 12, 980 (2017).

    Article  ADS  Google Scholar 

  16. Yu. A. Izyumov, Sov. Phys. Usp. 27, 845 (1984).

    Article  ADS  Google Scholar 

  17. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. E. Eitenne, G. Creuzet, A. Friedrich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  18. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B 102, 134431 (2020).

  19. H. Bateman, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 1.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.V. Ustinov an I.A. Yasyulevich for discussions of this study.

Funding

This work was performed under the state assignment of the Ministry of Science and Higher Education of the Russian Federation (subject “Spin” no. AAAA-A18-118020290104-2) and supported in part by the Russian Foundation for Basic Research (project no. 19-02-00038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bebenin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebenin, N.G. Effect of Electric Current on the Spin Polarization of Electrons in Materials with Nonuniform Magnetization. J. Exp. Theor. Phys. 134, 630–637 (2022). https://doi.org/10.1134/S1063776122050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122050028

Navigation