Skip to main content
Log in

MOLYBDATES AND TUNGSTATES OF THE ALLUAUDITE FAMILY: CRYSTAL CHEMISTRY, COMPOSITION, AND IONIC MOBILITY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The work reviews the structure, non-stoichiometry, and ionic mobility of molybdates, tungstates, and other compounds crystallizing in the structure type of alluaudite (Na, Ca)(Fe, Mn, Mg)3(PO4)3 with the general Moore′s crystal chemical formula X(2)X(1)M(1)M(2)2(TO4)3, where X are large cations Na+, Ca2+, K+, Pb2+, etc., with the coordination number 8; M are octahedral cations, T = P, As, V, S, Mo, W. Using this formula and the corresponding site occupancies, possible limits of double molybdate and tungstate compositions of the alluaudite family are determined. Various types of distortions (superstructures) of alluaudite are considered; several groups of phases with different symmetries, numbers of anions in the unit cell, and vector relations with the unit cell of the original alluaudite structure are distinguished. It is shown that chains of partially defective positions X(2) and X(1) aligned along axis c play a key role in the transport of sodium cations in the alluaudite type phases. Phosphates and sulfates with alluaudite structure exhibit mainly 1D transport of sodium ions; however, calculations of the bond-valence sum maps, NMR data, and ab initio calculations show that 2D transport in the (100) plane is possible in complex molybdates and tungstates due to the transport of Na+ ions between X(2)–X(2) and X(1)–X(1) channels through the bridging site M(1). It is shown that the family of alluaudite-related (pseudo)orthorhombic triple molybdates Na10Cs4M5(MoO4)12 (M = Mn, Co) and Na25Cs8R5(MoO4)24 (R = Fe, Sc, In) also exhibits 2D diffusion of sodium ions via successive zigzag ion hoppings and that 3D transport may appear at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. * According to the notations of this work, α refers to the low-temperature modification.

  2. * In contrast to the common viewpoint [75] that associates the term “daltonide” with the topology of phase diagrams and extrema of the properties of compounds with variable composition, we follow the crystal-chemical interpretation by G. B. Bokii and consider daltonide as a non-stoichiometric compound with Dalton points where the structure is completely or partially ordered at one or more crystallographic sites within (or at the borders of) the homogeneity region. In our opinion, the knowledge of the structure and the identification of such points is absolutely necessary to construct a meaningful crystal-chemical classification of non-stoichiometric compounds as phases that are formed similarly to substitution-, interstitial-, or omission solid solutions.

  3. * The BVS contour maps (isosurfaces) for sodium cations were constructed from the atomic coordinates of Na2.56Fe1.72(SO4)3 and the structures of other compounds discussed below using the 3DBVSMAPPER software [89].

  4. * The composition of this phase was determined from structural data and needs verification (see the above discussion).

REFERENCES

  1. V. K. Trunov, V. A. Efremov, and Y. A. Velikodnyi. Kristallokhimiya i svoistva dvoinykh molibdatov i volframatov (Crystal Chemistry and Properties of Double Molybdates and Tungstates). Leningrad: Nauka, 1986. [In Russian]

  2. A. A. Evdokimov, V. A. Efremov, V. K. Trunov, I. A. Kleiman, and I. V. Tananaev. Soedineniya redkozemelnykh elementov. Molibdaty, volframaty (Compounds of Rare Earth Elements. Molybdates, Tungstates). Moscow: Nauka, 1991. [In Russian]

  3. V. A. Isupov. Ferroelectrics, 2005, 321, 63. https://doi.org/10.1080/00150190500259699

    Article  CAS  Google Scholar 

  4. N. M. Kozhevnikova and M. V. Mokhosoev. Troinye molibdaty (Triple Molybdates). Ulan-Ude: Buryatskii Gos. Univ., 2000. [In Russian]

  5. E. G. Khaikina, S. F. Solodovnikov, O. M. Basovich, Z. A. Solodovnikova, Y. M. Kadyrova, A. A. Savina, E. S. Zolotova, V. N. Yudin, and T. S. Spiridonova. Chim. Techno Acta, 2015, 4, 356. https://doi.org/10.15826/chimtech.2015.2.4.032

    Article  Google Scholar 

  6. A. L. Buzlukov, D. S. Fedorov, A. V. Serdtsev, I. Yu. Kotova, A. P. Tyutyunnik, D. V. Korona, Ya. V. Baklanova, V. V. Ogloblichev, N. M. Kozhevnikova, T. A. Denisova, and I. N. Medvedeva. J. Exp. Theor. Phys., 2022, 134, 42.

  7. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, and K. Kang. Adv. Energy Mater., 2016, 6, 1600943. https://doi.org/10.1002/aenm.201600943

    Article  CAS  Google Scholar 

  8. P. Barpanda, G. Oyama, S. Nishimura, S. Chung, and A. Yamada. Nat. Commun., 2014, 5, 4358. https://doi.org/10.1038/ncomms5358

    Article  CAS  PubMed  Google Scholar 

  9. D. Dwibedi, P. Barpanda, and A. Yamada. Small Meth., 2020, 2000051. https://doi.org/10.1002/smtd.202000051

    Article  CAS  Google Scholar 

  10. G. Oyama, S. Nishimura, Y. Suzuki, M. Okubo, and A. Yamada. ChemElectroChem, 2015, 2, 1019. https://doi.org/10.1002/celc.201500036

    Article  CAS  Google Scholar 

  11. J. Gao, P. Zhao, and K. Feng. Chem. Mater., 2017, 29, 940. https://doi.org/10.1021/acs.chemmater.6b05308

    Article  CAS  Google Scholar 

  12. J. Grins and M. Nygren. Solid State Ionics, 1983, 9/10, 859. https://doi.org/10.1016/0167-2738(83)90102-9

    Article  CAS  Google Scholar 

  13. A. L. Kruglyashov and E. M. Skou. Solid State Ionics, 1988, 28-30, 233. https://doi.org/10.1016/S0167-2738(88)80040-7

    Article  Google Scholar 

  14. Y. Lu, L. Chen, Y. Huang, C. Chen, S. I. Kim, and H. J. Seo. Appl. Surf. Sci., 2015, 331, 72. https://doi.org/10.1016/j.apsusc.2015.01.059

    Article  CAS  Google Scholar 

  15. R. Nasri, T. Larbi, H. Khemir, M. Amlouk, and M. F. Zid. Inorg. Chem. Commun., 2020, 119, 108113. https://doi.org/10.1016/j.inoche.2020.108113

    Article  CAS  Google Scholar 

  16. Alluaudite. In: Wikipedia. https://en.wikipedia.org/wiki/Alluaudite

  17. P. B. Moore. Am. Mineral., 1971, 56, 1955.

  18. P. B. Moore and J. Molin-Case. Am. Mineral., 1974, 59, 280.

  19. F. Hatert, P. Keller, F. Lissner, D. Antenucci, and A.-M. Fransolet. Eur. J. Mineral., 2000, 12, 847. https://doi.org/10.1127/0935-1221/2000/0012-0847

  20. F. Hatert. J. Solid State Chem., 2008, 181, 1258. https://doi.org/10.1016/j.jssc.2008.02.035

    Article  CAS  Google Scholar 

  21. T. Ðorđević, A. Wittner, and S. V. Krivovichev. Eur. J. Mineral., 2015, 27, 559.

  22. O. V. Yakubovich, G. V. Kiryukhina, and O. V. Dimitrova. Crystallogr. Rep., 2016, 61, 566. https://doi.org/10.1134/S1063774516040246

    Article  CAS  Google Scholar 

  23. S. F. Solodovnikov, R. F. Klevtsova, and P. V. Klevtsov. J. Struct. Chem., 1994, 35, 879. https://doi.org/10.1007/BF02578121

    Article  Google Scholar 

  24. S. F. Solodovnikov, Z. A. Solodovnikova, E. S. Zolotova, V. N. Yudin, O. A. Gulyaeva, Y. L. Tushinova, and B. M. Kuchumov. J. Solid State Chem., 2017, 253, 121. https://doi.org/10.1016/j.jssc.2017.05.031

    Article  CAS  Google Scholar 

  25. P. Keller and H. Hess. Neues Jahrb. Mineral., Monatsh., 1988, 9, 395.

  26. B. Mertens and Hk. Müller-Buschbaum. Z. Naturforsch. B, 1997, 50, 663. https://doi.org/10.1515/znb-1997-0520

    Article  CAS  Google Scholar 

  27. V. A. Efremov, Y. A. Velikodnyi, and V. K. Trunov. Kristallografiya, 1975, 20, 287. [In Russian]

  28. S. F. Solodovnikov, A. A. Savina, V. N. Yudin, O. A. Gulyaeva, Z. A. Solodovnikova, E. S. Zolotova, E. G. Khaikina, and S. Yu. Stefanovich. In: Proc. All-Russian Scientific Conference with International Participation “III Baikal Materials Science Forum”, July 9-15, 2018. Ulan-Ude, 2018, 114. [In Russian]

  29. R. F. Klevtsova, S. V. Borisov, N. A. Bliznyuk, L. A. Glinskaya, and P. V. Klevtsov. J. Struct. Chem., 1991, 32, 885. https://doi.org/10.1007/BF00747456

    Article  Google Scholar 

  30. R. Nasri, N. F. Bourguiba, M. F. Zid, and A. Driss. Acta Crystallogr., Sect. E, 2014, 70, i47. https://doi.org/10.1107/S1600536814016729

    Article  CAS  Google Scholar 

  31. R. Nasri, N. F. Bourguiba, and M. F. Zid. Acta Crystallogr., Sect. E, 2015, 71, 4. https://doi.org/10.1107/S2056989014025894

    Article  CAS  Google Scholar 

  32. V. N. Yudin, E. S. Zolotova, S. F. Solodovnikov, Z. A. Solodovnikova, I. V. Korolkov, S. Yu. Stefanovich, and B. M. Kuchumov. Eur. J. Inorg. Chem., 2019, 277. https://doi.org/10.1002/EJIC.201801307

    Article  CAS  Google Scholar 

  33. C. Bouzidi, W. Friqui, and M. F. Zid. Acta Crystallogr., Sect. E, 2015, 71, 69. https://doi.org/10.1107/S2056989014027030

    Article  CAS  Google Scholar 

  34. O. A. Gulyaeva, Z. A. Solodovnikova, S. F. Solodovnikov, V. N. Yudin, E. S. Zolotova, and V. Yu. Komarov. J. Solid State Chem., 2019, 272, 148. https://doi.org/10.1016/J.JSSC.2019.02.010

    Article  CAS  Google Scholar 

  35. V. N. Yudin. Sintez, fazovye ravnovesiya, stroenie i svoistva soedinenii v troinykh sistemakh Na2MoO4–Cs2MoO4–MMoO4 (M = Mg, Mn, Co, Ni, Zn) (Synthesis, phase equilibria, structure and properties of the compounds in the ternary systems Na2MoO4–Cs2MoO4–MMoO4 (M = Mg, Mn, Co, Ni, Zn)): PhD Thesis. Novosibirsk: Nikolaev Institute of Inorganic Chemistry, 2018. [In Russian]

  36. I. Ennajeh, S. Georges, Y. Ben Smida, A. Guesmi, M. F. Zid, and H. Boughazala. RSC Adv., 2015, 5, 38918. https://doi.org/10.1039/C5RA02276B

    Article  CAS  Google Scholar 

  37. W. Dridi and M. F. Zid. Acta Crystallogr., Sect. E, 2016, 72, 1103. https://doi.org/10.1002/chin.201643020

    Article  Google Scholar 

  38. I. A. Gudkova. Fazovye ravnovesiya, sintez, stroyeniye i svoistva soyedinenii, obrazuyushchikhsya v troinykh sistemakh Li2MoO4–A2MoO4–MMoO4 (A = Na, K, Rb, Cs; M = Ca, Sr, Pb, Ba, Cd) (Phase equilibria, synthesis, structure and properties of the compounds forming in the ternary systems Li2MoO4–A2MoO4–MMoO4 (A = Na, K, Rb, Cs; M = Ca, Sr, Pb, Ba, Cd)): PhD Thesis. Novosibirsk: Nikolaev Institute of Inorganic Chemistry, 2014. (In Russ.)

  39. S. Han, Y. Wang, Q. Jing, H. Wu, S. Pan, and Z. Yang. Dalton Trans., 2015, 44, 5810. https://doi.org/10.1039/c5dt00332f

    Article  CAS  PubMed  Google Scholar 

  40. S. F. Solodovnikov. Osobennosti fazoobrazovaniya i kristallokhimiya dvoinykh molibdatov i volframatov shchelochnykh i dvukhvalentnykh metallov i soputstvuyushchikh faz (Peculiarities of phase formation and crystal chemistry of double molybdates and tungstates of alkali and bivalent metals and accompanying phases): Doctoral (Chem.) Thesis. Novosibirsk: Nikolaev Institute of Inorganic Chemistry, 2000. [In Russian]

  41. R. F. Klevtsova, L. P. Kozeeva, and P. V. Klevtsov. Kristallografiya, 1975, 20, 925. [In Russian]

  42. N. I. Medvedeva, A. L. Buzlukov, A. V. Skachkov, A. A. Savina, V. A. Morozov, Ya. V. Baklanova, I. E. Animitsa, E. G. Khaikina, T. A. Denisova, and S. F. Solodovnikov. J. Phys. Chem. C, 2019, 123, 4729. https://doi.org/10.1021/acs.jpcc.8b11654

    Article  CAS  Google Scholar 

  43. Y. M. Gasanov. Sintez i stroyeniye dvoinykh solei shchelochnykh i redkozemelnykh elementov s tetraedricheskimi anionami sostava Me3MIII(ЭO4)3 i Me5MIII(ЭO4)4 (Synthesis and structure of double salts of alkali and rare earth elements with tetrahedral anions of composition Me3MIII(EO4)3 and Me5MIII(EO4)4): PhD Thesis. Moscow: Research Institute of Chemical Reagents and Highly Pure Chemical Substances, 1990. [In Russian]

  44. S. F. Solodovnikov, Z. A. Solodovnikova, V. N. Yudin, B. M. Kuchumov, A. A. Savina, and E. G. Khaikina. J. Struct. Chem., 2020, 61(3), 419. https://doi.org/10.1134/S0022476620030087

    Article  CAS  Google Scholar 

  45. S. F. Solodovnikov, A. A. Savina, V. N. Yudin, D. A. Belov, E. S. Zolotova, Z. A. Solodovnikova, T. S. Spiridonova, V. Yu. Komarov, E. G. Khaikina, and B. I. Lazoryak. In: VIII National Crystal Chemistry Conference, May 30-June 3, 2016. Suzdal, 2016, 237. [In Russian]

  46. A. L. Buzlukov, N. I. Medvedeva, Y. V. Baklanova, A. V. Skachkov, A. A. Savina, I. E. Animitsa, T. A. Denisova, and E. G. Khaikina. Solid State Ionics, 2020, 351, 115328. https://doi.org/10.1016/j.ssi.2020.115328

    Article  CAS  Google Scholar 

  47. M. Sonni, R. Marzouki, M. F. Zid, and A. Souilem. Acta Crystallogr., Sect. E, 2016, 72, 833. https://doi.org/10.1107/S205698901600774X

    Article  CAS  Google Scholar 

  48. E. Muessig, K. G. Bramnik, and H. Ehrenberg. Acta Crystallogr., Sect. B, 2003, 59, 611. https://doi.org/10.1107/S010876810301659842

  49. E. G. Khaikina, S. F. Solodovnikov, A. A. Savina, I. Yu. Kotova, T. S. Spiridonova, Yu. M. Kadyrova, Z. A. Solodovnikova, and E. S. Zolotova. In: Proc. All-Russian Scientific Conference with International Participation “III Baikal Materials Science Forum”, July 9-15, 2018. Ulan-Ude, 2018, 150. [In Russian]

  50. V. A. Efremov and V. K. Trunov. Zh. Neorg. Khim., 1972, 17, 2034. [In Russian]

  51. V. A. Efremov and V. K. Trunov. Neorg. Mater., 1975, 11, 273. [In Russian]

  52. V. A. Efremov, V. M. Zhukovskii, and Y. G. Petrosyan. Zh. Neorg. Khim., 1976, 21, 209. [In Russian]

  53. V. A. Efremov. Kristallokhimiya nekotorykh dvoinykh soley s tetraedricheskimi anionami EO4 (Crystal chemistry of some double salts of with tetrahedral EO4 anions): PhD Thesis. Moscow: Moscow State University, 1976. [In Russian]

  54. V. A. Efremov, Y. G. Petrosyan, and V. M. Zhukovskii. Zh. Neorg. Khim., 1977, 22, 175. [In Russian]

  55. S. F. Solodovnikov, Z. A. Solodovnikova, P. V. Klevtsov, and E. S. Zolotova. Zh. Neorg. Khim., 1995, 40, 305. [In Russian]

  56. G. D. Tsyrenova, S. S. Gypylova, S. F. Solodovnikov, and E. S. Zolotova. Zh. Neorg. Khim., 2000, 45, 1905. [In Russian]

  57. S. F. Solodovnikov, Z. A. Solodovnikova, I. A. Gudkova, E. S. Zolotova, and V. N. Yudin. J. Struct. Chem., 2013, 54, 917. https://doi.org/10.1134/S0022476613050119

    Article  CAS  Google Scholar 

  58. G. D. Tsyrenova, S. F. Solodovnikov, E. S. Zolotova, B. A. Tsybikova, and Zh. G. Bazarova. Zh. Neorg. Khim., 2000, 45, 109. [In Russian]

  59. I. N. Smirnova and I. P. Kislyakov. Neorg. Mater., 1971, 7, 1882. [In Russian]

  60. V. A. Efremov and V. K. Trunov. Zh. Neorg. Khim., 1972, 19, 501. [In Russian]

  61. F. Yan, D. Chen, W. Li, Z. Lin, Z. Zhao, L. Xue, F Huang., and J. Liang. J. Alloys Compd., 2008, 458, 138. https://doi.org/10.1016/J.JALLCOM.2007.04.024

    Article  CAS  Google Scholar 

  62. Y. A. Velikodnyi and V. K. Trunov. Neorg. Mater., 1974, 10, 1290. [In Russian]

  63. C. Durio, A. Daidouh, N. Chouaibi, C. Pico, and M. L. Veiga. J. Solid State Chem., 2002, 168, 208. https://doi.org/10.1006/jssc.2002.9712

    Article  CAS  Google Scholar 

  64. T. S. Ercit. Mineral. Mag., 1993, 57, 721.

  65. D. Marinova, V., Kostov R. Nikolova, R. Kukeva, E. Zhecheva, M. Sendova-Vasileva, and R. Stoyanova. J. Mater. Chem., 2015, 3, 22287. https://doi.org/10.1039/C5TA07204B

    Article  CAS  Google Scholar 

  66. A. A. Savina, S. F. Solodovnikov, O. M. Basovich, Z. A. Solodovnikova, D. A. Belov, K. V. Pokholok, I. A. Gudkova, S. Yu. Stefanovich, B. I. Lazoryak, and E. G. Khaikina. J. Solid State Chem., 2013, 205, 149. https://doi.org/10.1016/j.jssc.2013.07.007

    Article  CAS  Google Scholar 

  67. A. A. Savina, V. A. Morozov, O. M. Basovich, E. G. Khaikina, and B. I. Lazoryak. Acta Crystallogr., Sect. C, 2013, 69, 1301. https://doi.org/10.1107/S010827011302862X

    Article  CAS  PubMed  Google Scholar 

  68. W. Dridi, I. Ennajeh, and M. F. Zid. Acta Crystallogr., Sect. E, 2015, 71, 435. https://doi.org/10.1107/S2056989015005976

    Article  CAS  Google Scholar 

  69. A. A. Savina, V. A. Morozov, A. L. Buzlukov, I. Yu. Arapova, S. Yu. Stefanovich, Y. V. Baklanova, T. A. Denisova, N. I. Medvedeva, M. Bardet, J. Hadermann, B. I. Lazoryak, and E. G. Khaikina. Chem. Mater., 2017, 29, 8901. https://doi.org/10.1021/ACS.CHEMMATER.7B03989

    Article  CAS  Google Scholar 

  70. A. L. Buzlukov, Y. V. Baklanova, I. Yu. Arapova, A. A. Savina, V. A. Morozov, M. Bardet, B. I. Lazoryak, E. G. Khaikina, T. A. Denisova, and N. I. Medvedeva. Ionics, 2021, 27, 4281. https://doi.org/10.1007/s11581-021-04226-3

    Article  CAS  Google Scholar 

  71. F. DYvoire, E. Bretey, and G. Collin. Solid State Ionics, 1988, 28-30, 1259.

  72. N. S. Kurnakov. Vvedeniye v fiziko-khimicheskii analiz (Introduction to Physical Chemical Analysis), 4th ed. Moscow-Leningrad: Akad. Nauk SSSR, 1940. [In Russian]

  73. G. B. Bokij. Zh. Neorg. Khim., 1956. 1, 1599. [In Russian]

  74. G. B. Bokij. Kristallokhimiya (Crystal Chemistry), 3d ed. Moscow: Nauka, 1971. [In Russian]

  75. P. P. Fedorov. Russ. J. Inorg. Chem., 2012, 57, 959. https://doi.org/10.1134/S003602361207011X

    Article  CAS  Google Scholar 

  76. R. D. Shannon. Acta Crystallogr., 1976, 32,751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  77. T. S. Ercit, F. C. Hawthorne, and P. Černý. Can. Mineral., 1986, 24, 605.

  78. K. T. Tait, T. S. Ercit, Y. A. Abdu, F. C. Hawthorne, and P. Černý. Can. Mineral., 2011, 49, 1221.

  79. A. A. Savina and S. F. Solodovnikov. In: Proc. III All-Russian Youth Scientific Conference with International Participation “Ecologically safe and resource-saving technologies and materials”, May 18-20, 2017. Ulan-Ude, 2017, 13. [In Russian]

  80. R. F. Klevtsova, N. V. Ivannikova, and P. V. Klevtsov. Crystallogr., 1979, 24, 257. [In Russian]

  81. S. F. Solodovnikov, P. V. Klevtsov, Z. A. Solodovnikova, L. A. Glinskaya, and R. F. Klevtsova. J. Struct. Chem., 1998, 39, 230. https://doi.org/10.1007/BF02873623

    Article  CAS  Google Scholar 

  82. W. Dridi and M. F. Zid. J. Struct. Chem., 2018, 59, 1128. https://doi.org/10.1134/S0022476618050153

    Article  CAS  Google Scholar 

  83. E. P. Belykh, A. A. Savina, S. F. Solodovnikov, S. V. Asylova, Z. A. Solodovnikova, T. S. Spiridonova, and E. G. Khaikina. In: Proc. III All-Russian Youth Scientific Conference with International Participation “Ecologically safe and resource-saving technologies and materials”, May 18-20, 2017. Ulan-Ude, 2017, 24. [In Russian]

  84. A. A. Savina, S. F. Solodovnikov, D. A. Belov, O. M. Basovich, Z. A. Solodovnikova, K. V. Pokholok, S. Yu. Stefanovich, B. I. Lazoryak, and E. G. Khaikina. J. Solid State Chem., 2014, 220, 217. https://doi.org/10.1016/J.JSSC.2014.09.004

    Article  CAS  Google Scholar 

  85. A. A. Savina, S. F. Solodovnikov, D. A. Belov, Z. A. Solodovnikova, S. Yu. Stefanovich, B. I. Lazoryak, and E. G. Khaikina. New J. Chem., 2017, 41, 5450. https://doi.org/10.1039/C7NJ00202E

    Article  CAS  Google Scholar 

  86. L. L. Wong, H. M. Chen, and S. Adams. Phys. Chem. Chem. Phys., 2015, 17, 9186. https://doi.org/10.1039/c5cp00380f

    Article  CAS  PubMed  Google Scholar 

  87. I. D. Brown. Chem. Rev., 2009, 109, 6858. https://doi.org/10.1021/cr900053k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. Adams and R. Prasada Rao. In: Bond Valences / Eds. I. Brown and K. Poeppelmeier: Structure and Bonding, Vol. 158. Berlin, Heidelberg: Springer, 2014, 129-159. https://doi.org/10.1007/430_2013_137

    Chapter  Google Scholar 

  89. M. Sale and M. Avdeev. J. Appl. Crystallogr., 2012, 45, 1054. https://doi.org/10.1107/S0021889812032906

    Article  CAS  Google Scholar 

  90. A. K. Ivanov-Shits and I. V. Murin. Ionika tverdogo tela (Solid State Ionics). St. Petersburg State Univ., 2000. [In Russian]

  91. W. Dridi, M. F. Zid, and M. Maczka. Adv. Mater. Sci. Eng., 2017, 2017, 6123628. https://doi.org/10.1155/2017/6123628

    Article  CAS  Google Scholar 

  92. J. Lu and A. Yamada. ChemElectroChem, 2016, 3, 902. https://doi.org/10.1002/celc.201500535

    Article  CAS  Google Scholar 

  93. N. M. Kozhevnikova and S. Yu. Tsyretarova. Russ. J. Inorg. Chem., 2015, 60, 520-525. https://doi.org/10.1134/S0036023615040087

    Article  CAS  Google Scholar 

  94. A. L. Buzlukov, N. I. Medvedeva, D. V. Suetin, A. V. Serdtsev, Y. V. Baklanova, S. F. Solodovnikov, A. P. Tyutyunnik, T. A. Denisova, and O. A. Gulyaeva. J. Solid State Chem., 2021, 293, 121800. https://doi.org/10.1016/j.jssc.2020.121800

    Article  CAS  Google Scholar 

  95. A. V. Serdtsev and N. I. Medvedeva. J. Alloys Compd., 2019, 808, 151667. https://doi.org/10.1016/J.JALLCOM.2019.151667

    Article  CAS  Google Scholar 

  96. A. V. Serdtsev, S. F. Solodovnikov, and N. I. Medvedeva. Mater. Today Commun., 2020, 22, 100825. https://doi.org/10.1016/j.mtcomm.2019.100825

    Article  CAS  Google Scholar 

  97. Y. V. Baklanova, A. L. Buzlukov, D. S. Fedorov, T. A. Denisova, A. P. Tyutyunnik, A. A. Savina, E. G. Khaikina, and I. Yu. Arapova. Russ. J. Inorg. Chem., 2022, press.

  98. J. Lu, S. Nishimura, and A. Yamada. Chem. Mater., 2017, 29, 3597. https://doi.org/10.1021/ACS.CHEMMATER.7B00226

    Article  CAS  Google Scholar 

  99. L. L. Driscoll, E. Kendricka, K. S. Knight, A. J. Wright, and P. R. Slater. J. Solid State Chem., 2018, 258, 64. https://doi.org/10.1016/j.jssc.2017.09.025

    Article  CAS  Google Scholar 

  100. A. Sarkar, B. Breitung, and H. Hahn. Scr. Mater., 2020, 187, 43. https://doi.org/10.1016/j.scriptamat.2020.05.019

    Article  CAS  Google Scholar 

  101. S. H. Albedwawi, A. AlJaberi, G. N. Haidemenopoulos, and K. Polychronopoulou. Mater. Des., 2021, 202, 109534. https://doi.org/10.1016/j.matdes.2021.109534

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Assignments of Nikolaev Institute of Inorganic Chemistry SB RAS, Baikal Institute of Nature Management SB RAS, M. N. Mikheev Institute of Metal Physics UB RAS, Institute of Solid State Chemistry UB RAS, and partially funded by RFBR (projects 16-03-00510 and 17-03-00333). The part of the research devoted to the determination of the mechanism of diffusion of sodium ions in molybdates was funded by the Russian Science Foundation (project 18-12-00395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Solodovnikov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 96516.https://doi.org/10.26902/JSC_id96516

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodovnikov, S.F., Gulyaeva, O.A., Savina, A.A. et al. MOLYBDATES AND TUNGSTATES OF THE ALLUAUDITE FAMILY: CRYSTAL CHEMISTRY, COMPOSITION, AND IONIC MOBILITY. J Struct Chem 63, 1101–1133 (2022). https://doi.org/10.1134/S0022476622070071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070071

Keywords

Navigation