Skip to main content
Log in

Generalized Ising Model in a Magnetic Field

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Results on the generalization of the Ising model to an arbitrary number of translations of a linear chain in an external magnetic field, taking into account various interactions between spins, are presented. An exact analytical expression has been derived for the largest eigenvalue of the Kramers–Wannier transfer matrix with a translation per two chain periods in an external magnetic field when the nearest and second neighbors are taken into account. Exact expressions have been established for the zero-temperature entropies and magnetizations at various magnitudes and signs of the exchange interactions and the magnetic field. Many of the zero-temperature entropies and zero-temperature magnetizations found are represented via the so-called mathematical ratios long known in the wonderful world of number mathematics (the golden ratio φ, the silver ratio δ, the supergolden ratio ψ, the plastic number ρ, and new (nameless) ones). A result whereby the frustrating entropies and magnetizations can be expressed via the limit of the ratio of certain number sequences without invoking the formalism of the Kramers–Wannier transfer matrix has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. I. Syozi and S. Naya, Prog. Theor. Phys. 23, 374 (1960).

    Article  ADS  Google Scholar 

  2. I. Syozi and S. Naya, Prog. Theor. Phys. 24, 829 (1960).

    Article  ADS  Google Scholar 

  3. I. Syozi, Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1972), Vol. 1.

    Google Scholar 

  4. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Utiyama, Prog. Theor. Phys. 6, 907 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. H. Wannier, Phys. Rev. 79, 357 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. M. F. Houtappel, Prog. Theor. Phys. 16, 425 (1950).

    MathSciNet  Google Scholar 

  8. K. Kanô and S. Naya, Prog. Theor. Phys. 10, 158 (1953).

    Article  ADS  Google Scholar 

  9. E. S. Tsuvarev, F. A. Kassan-Ogly, and A. I. Proshkin, J. Exp. Theor. Phys. 131, 447 (2020).

    Article  ADS  Google Scholar 

  10. E. S. Tsuvarev and F. A. Kassan-Ogly, J. Exp. Theor. Phys. 131, 976 (2020).

    Article  ADS  Google Scholar 

  11. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982).

    MATH  Google Scholar 

  12. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 263 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. V. Zarubin, F. A. Kassan-Ogly, A. I. Proshkin, and A. E. Shestakov, J. Exp. Theor. Phys. 128, 778 (2019).

    Article  Google Scholar 

  15. F. A. Kassan-Ogly, Phase Trans. 74, 353 (2001).

    Article  Google Scholar 

  16. E. Ising, Zeitschr. Phys. 21, 253 (1925).

    Article  ADS  Google Scholar 

  17. Q. Wu, Math. Comput. 79, 2387 (2010).

    Article  Google Scholar 

  18. D. Lind, J. Number Theory 40, 211 (1992).

    Article  MathSciNet  Google Scholar 

  19. D. W. Boyd, Math. Comput. 45, 243 (1985).

    Article  Google Scholar 

  20. N. J. A. Sloane, A Handbook of Integer Sequences (Academic, New York, 1973).

    MATH  Google Scholar 

  21. N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, 1st ed. (Academic, New York, 1995).

    MATH  Google Scholar 

  22. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Houghton Mifflin, Boston, 1969).

    MATH  Google Scholar 

  23. J. Allouche and T. Johnson, in Proceedings of the Conference JIM96 (Journés d’Informatique Musicale), Ile de Tatihou, France, 1996.

  24. X. Lin, Symmetry 13, 12 (2021).

    Google Scholar 

  25. M. Bicknell, Fibonacci Quart. 13, 345 (1975).

    MathSciNet  Google Scholar 

  26. R. P. M. Vieira, F. R. V. Alves, and P. M. M. C. Catarino, Int. J. Trends Math. Educ. Res. 3, 8 (2020).

    Google Scholar 

  27. W. Adams and D. Shanks, Math. Comput. 39, 255 (1982).

    Article  Google Scholar 

Download references

Funding

The work was performed within the State assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Quantum,” no. AAAA-A18-118020190095-4 and “Alloys,” no. AAAA-A19-119070890020-3) and under partial support of the Ural branch of the Russian Academy of Sciences (project no. 18-2-2-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Tsuvarev or F. A. Kassan-Ogly.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuvarev, E.S., Kassan-Ogly, F.A. Generalized Ising Model in a Magnetic Field. J. Exp. Theor. Phys. 133, 191–205 (2021). https://doi.org/10.1134/S1063776121080112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121080112

Navigation