Skip to main content
Log in

Dynamics of Time Evolution of Quantum Oscillator Excitation by Electromagnetic Pulses

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of time evolution of quantum oscillator excitation by electromagnetic pulses is investigated theoretically for an arbitrary field amplitude in a pulse. We consider a harmonic oscillator without damping and excitation between stationary states. The general formula for the excitation of quantum states as a function of time is derived in terms of instantaneous energy of an associated classical oscillator in the field of an electromagnetic pulse. The derived expression is used in detailed analysis of the time dependence of the quantum oscillator excitation probability beyond the range of perturbation theory for various pulse parameters including total excitation from the ground state, excitation from excited states, and excitation spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. J. Schwinger, Phys. Rev. 91, 728 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Husimi, Prog. Theor. Phys. 9, 381 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. T. Hassan, A. Wirth, I. Grguras, et al., Rev. Sci. Instrum. 83, 111301 (2012).

    Article  ADS  Google Scholar 

  4. M. Chini, K. Zhao, and Z. Chang, Nat. Photon. 8, 178 (2014).

    Article  ADS  Google Scholar 

  5. D. N. Makarov, M. R. Eseev, and K. A. Makarova, Opt. Lett. 44, 3042 (2019).

    Article  ADS  Google Scholar 

  6. D. N. Makarov, Opt. Express 27, 31989 (2019).

    Article  ADS  Google Scholar 

  7. D. N. Makarov, Sci. Rep. 8, 8204 (2018).

    Article  ADS  Google Scholar 

  8. V. A. Astapenko, Appl. Phys. B 126, 110 (2020).

    Article  ADS  Google Scholar 

  9. F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, J. Phys. B 50, 235601 (2017).

    Article  ADS  Google Scholar 

  10. F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Phys. Rev. A 90, 043421 (2014).

    Article  ADS  Google Scholar 

  11. Z. Fu and M. Yamaguchi, Sci. Rep. 6, 38264 (2016).

    Article  ADS  Google Scholar 

  12. V. A. Astapenko and E. V. Sakhno, Appl. Phys. B 126, 23 (2020).

    Article  ADS  Google Scholar 

  13. S. Beaulieu, A. Comby, A. Clergerie, et al., Science (Washington, DC, U. S.) 358, 1288 (2017).

    Article  ADS  Google Scholar 

  14. M. Isinger, R. J. Squibb, D. Busto, et al., Science (Washington, DC, U. S.) 358, 893 (2017).

    Article  ADS  Google Scholar 

  15. A. Kaldun, A. Blättermann, S. Donsa, V. Stooß, et al., Science (Washington, DC, U. S.) 354, 738 (2016).

    Article  ADS  Google Scholar 

  16. V. Gruson, L. Barreau, A. Jiménez-Galan, et al., Science (Washington, DC, U. S.) 354, 734 (2016).

    Article  ADS  Google Scholar 

  17. V. A. Astapenko, J. Exp. Theor. Phys. 130, 56 (2020).

    Article  ADS  Google Scholar 

  18. E. Saldin, E. V. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin, 1999).

  19. F. B. Rosmej, V. A. Astapenko, and E. S. Khramov, Matter Rad. Extrem. Lett. 6, 034001 (2021).

    Article  Google Scholar 

  20. T. Tanaka, Phys. Rev. Lett. 114, 044801 (2015).

    Article  ADS  Google Scholar 

  21. A. Mak, G. Shamuilov, P. Salen, et al., Rep. Prog. Phys. 82, 025901 (2019).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004; Pergamon, New York, 1977).

  23. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).

  24. F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics, Vol. 104 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, Switzerland, 2021).

Download references

Funding

This study was supported by the Moscow Institute of Physics and Technology under Program 5-top-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Astapenko.

Additional information

Translated by N. Wadhwa

Appendices

APPENDIX A

We assume that prior to excitation (t → –∞), an oscillator has been in the nth stationary state with wave function (without the time factor) [22]

$$\begin{gathered} \psi _{n}^{{(0)}}(x) = {{\left( {\frac{{M\omega }}{{\pi \hbar }}} \right)}^{{1/4}}}\frac{1}{{\sqrt {{{2}^{n}}n!} }} \\ \times \exp \left( { - \frac{{M\omega }}{{2\hbar }}{{x}^{2}}} \right){{H}_{n}}\left( {x\sqrt {\frac{{M\omega }}{\hbar }} } \right), \\ \end{gathered} $$
(A.1)

where Hn are the Hermitian polynomials. We introduce dimensionless variable

$$\tilde {x} = x\sqrt {\frac{{M\omega }}{\hbar }} $$
(A.2)

and dimensionless function

$$\tilde {\psi } = {{\left( {\frac{\hbar }{{M\omega }}} \right)}^{{1/4}}}\psi .$$
(A.3)

Under the action of an EMP, the initial function is transformed as \(\tilde {\psi }_{n}^{{(0)}}\)(x) → \({{\tilde {\psi }}_{n}}\)(x, t). Then we obtain the following expression for the probability of transition nm between the stationary states of a quantum oscillator (at instant t):

$${{W}_{{mn}}}(t) = {{\left| {\int\limits_{ - \infty }^\infty {d\tilde {x}{{{\tilde {\psi }}}_{n}}(\tilde {x},t)\tilde {\psi }_{m}^{{(0)}}(\tilde {x})} } \right|}^{2}},\quad m > n.$$
(A.4)

Here, we have introduced function (see [2])

$${{\tilde {\psi }}_{n}}(\tilde {x},t) = \exp (i\varphi t)\tilde {\psi }_{n}^{{(0)}}(\tilde {x} - \tilde {\eta }(t))\exp (i\dot {\tilde {\eta }}\tilde {x}),$$
(A.5)

which is the analytic solution to the time-dependent Schrödinger equation for a 1D harmonic oscillator under the action of a time-dependent external force. We define dimensionless function as

$$\tilde {\eta }(t) = \frac{{M\omega }}{\hbar }\eta (t),$$
(A.6)

where η(t) is the solution to the equation for induced oscillations of the classical oscillator under the action of the external force,

$$\ddot {\eta } + {{\omega }^{2}}\eta = \frac{{f(t)}}{M},$$
(A.7)

with initial conditions η(–∞) = \(\dot {\eta }\)(–∞) = 0, as well as corresponding derivatives:

$$\dot {\tilde {\eta }} = \frac{{d\tilde {\eta }}}{{\omega dt}} = \frac{{d\tilde {\eta }}}{{d\tilde {t}}},$$
(A.8)
$$\dot {\tilde {\eta }} = \sqrt {\frac{M}{{\hbar \omega }}} \dot {\eta }.$$
(A.9)

With account for the above argument, we obtain

$$\begin{gathered} {{W}_{{mn}}}(t) = \frac{1}{{\pi {{2}^{n}}n!{{2}^{m}}m!}}\left| {\int\limits_{ - \infty }^{ + \infty } {d\tilde {x}\exp \left( { - \frac{{{{{(\tilde {x} - \tilde {\eta })}}^{2}}}}{2}} \right)} } \right. \\ {{\left. { \times \,{{H}_{n}}(\tilde {x} - \tilde {\eta }(t))\exp (i\dot {\tilde {\eta }}\tilde {x}){{H}_{m}}(\tilde {x})\exp \left( { - \frac{{{{{\tilde {x}}}^{2}}}}{2}} \right)} \right|}^{2}}. \\ \end{gathered} $$
(A.10)

Further, we must evaluate integral

$$\begin{gathered} {{I}_{1}} = \int\limits_{ - \infty }^\infty {du\exp \left[ { - {{u}^{2}} + u\tilde {\eta } - \frac{{{{{\tilde {\eta }}}^{2}}}}{2} + i\dot {\tilde {\eta }}u} \right]} \\ \times \,{{H}_{m}}(u){{H}_{n}}(u - \tilde {\eta }). \\ \end{gathered} $$
(A.11)

We introduce variable

$$y = \frac{i}{2}\dot {\tilde {\eta }} + \frac{1}{2}\tilde {\eta },$$
(A.12)

which gives

$${{I}_{1}} = \exp \left( {\frac{i}{2}\dot {\tilde {\eta }}\tilde {\eta } - \frac{{{{{\tilde {\eta }}}^{2}}}}{4} - \frac{{{{{\dot {\tilde {\eta }}}}^{2}}}}{4}} \right){{I}_{2}}(\tilde {\eta },y),$$
(A.13)

where

$$\begin{gathered} {{I}_{2}}(\tilde {\eta },y) \equiv \int\limits_{ - \infty }^\infty {du{{e}^{{ - {{{(u - y)}}^{2}}}}}{{H}_{m}}(u){{H}_{n}}(u - \tilde {\eta })} \\ \mathop = \limits^{(u = x + y)} \int\limits_{ - \infty }^\infty {dx{{e}^{{ - {{x}^{2}}}}}{{H}_{m}}(x + y){{H}_{n}}(x + y - \tilde {\eta }).} \\ \end{gathered} $$
(A.14)

Let us use tabulated integral (7.378) from [23],

$$\begin{gathered} \int\limits_{ - \infty }^\infty {{{e}^{{ - {{x}^{2}}}}}{{H}_{m}}(x + w){{H}_{n}}(x + z)dx} \\ = {{2}^{m}}\sqrt \pi n!{{z}^{{m - n}}}L_{n}^{{m - n}}( - 2wz),\quad m > n, \\ \end{gathered} $$
(A.15)

where \(L_{n}^{{m - n}}\) is the generalized Laguerre polynomial.

For reducing I2(\(\tilde {\eta }\), y) to tabulated integral (A.15), we must perform the substitution

$$\begin{gathered} w = y, \\ z = y - \tilde {\eta }. \\ \end{gathered} $$
(A.16)

This gives

$${{I}_{2}}(\tilde {\eta },y) = {{2}^{m}}\sqrt \pi n!{{(y - \tilde {\eta })}^{{m - n}}}L_{n}^{{m - n}}( - 2y(y - \tilde {\eta })).$$
(A.17)

Introducing notation arg = –2y(y\(\tilde {\eta }\)) and using relations (A.16), we obtain

$$\begin{gathered} \arg = - 2\left( {\frac{i}{2}\dot {\tilde {\eta }} + \frac{1}{2}\tilde {\eta }} \right)\left( {\frac{i}{2}\dot {\tilde {\eta }} + \frac{1}{2}\tilde {\eta } - \tilde {\eta }} \right) \\ = - 2\left( {\frac{i}{2}\dot {\tilde {\eta }} + \frac{1}{2}\tilde {\eta }} \right)\left( {\frac{i}{2}\dot {\tilde {\eta }} - \frac{1}{2}\tilde {\eta }} \right) = \frac{{{{{\dot {\tilde {\eta }}}}^{2}} + {{{\tilde {\eta }}}^{2}}}}{2}, \\ \end{gathered} $$
(A.18)

or, in dimensional variables,

$$\arg = \frac{{M{{{\dot {\eta }}}^{2}} + {{\omega }^{2}}M{{\eta }^{2}}}}{{2\hbar \omega }} \equiv \frac{{\varepsilon (t)}}{{\hbar \omega }} = \frac{{A(t)}}{{\hbar \omega }} = \nu (t),$$
(A.19)
$$\nu (t) = \frac{{A(t)}}{{\hbar \omega }}.$$
(A.20)

Here, A(t) is the work done on the classical oscillator η(t) under the action of an EMP. Considering that

$${\text{|}}y - \tilde {\eta }{{{\text{|}}}^{{\text{2}}}} = \frac{{{{{\dot {\tilde {\eta }}}}^{2}} + {{{\tilde {\eta }}}^{2}}}}{4} = \frac{{M({{{\dot {\eta }}}^{2}} + {{\omega }^{2}}{{\eta }^{2}})}}{{4\hbar \omega }} = \frac{\nu }{2},$$
(A.21)

we obtain

$$\begin{gathered} {\text{|}}{{I}_{2}}{{{\text{|}}}^{2}} = {{2}^{{2m}}}\pi {{(n!)}^{2}}\frac{{{{\nu }^{{m - n}}}}}{{{{2}^{{m - n}}}}}{\text{|}}L_{n}^{{m - n}}(\nu ){{{\text{|}}}^{2}} \\ = {{2}^{{n + m}}}\pi {{(n!)}^{2}}{{\nu }^{{m - n}}}{\text{|}}L_{n}^{{m - n}}(\nu ){{{\text{|}}}^{2}}. \\ \end{gathered} $$
(A.22)

Since

$${\text{|}}{{I}_{1}}{{{\text{|}}}^{2}} = \exp ( - \nu ){\text{|}}{{I}_{2}}{{{\text{|}}}^{2}},$$
(A.23)

we get

$${{W}_{{mn}}}(t) = \frac{1}{{\pi {{2}^{n}}n!{{2}^{m}}m!}}{\text{|}}{{I}_{1}}{{{\text{|}}}^{2}}.$$
(A.24)

Finally, we obtain the QO excitation probability on transition nm, m > n:

$$\begin{gathered} {{W}_{{mn}}}(t) = {{{\tilde {W}}}_{{mn}}}[\nu (t)] \\ = \frac{{n!}}{{m!}}\nu {{(t)}^{{m - n}}}\exp ( - \nu (t)){\text{|}}L_{n}^{{m - n}}(\nu (t)){{{\text{|}}}^{{\text{2}}}}. \\ \end{gathered} $$
(A.25)

For deriving formula (11), we use the following representation of the generalized Laguerre polynomial [23]:

$$L_{n}^{\alpha }(x) = \frac{1}{{n!}}{{e}^{x}}{{x}^{{ - \alpha }}}\frac{{{{d}^{n}}}}{{d{{x}^{n}}}}({{e}^{{ - x}}}{{x}^{{n + \alpha }}}).$$
(A.26)

Substituting this relation into (A.25), we get

$${{\tilde {W}}_{{mn}}}(\nu ) = \frac{1}{{n!m!}}{{e}^{\nu }}{{\nu }^{{n - m}}}{{\left| {\frac{{{{d}^{n}}}}{{d{{\nu }^{n}}}}({{e}^{{ - \nu }}}{{\nu }^{m}})} \right|}^{2}}.$$
(A.27)

Considering that

$$\begin{gathered} {{\nu }^{{n - m}}}{{\left| {\frac{{{{d}^{n}}}}{{d{{\nu }^{n}}}}({{e}^{{ - \nu }}}{{\nu }^{m}})} \right|}^{2}} \\ = {{\nu }^{{m + n}}}{{e}^{{ - 2\nu }}}{{\left| {\sum\limits_{k = 0}^{\min (n,m)} {\frac{{n!m!{{{( - 1)}}^{k}}{{\nu }^{{ - k}}}}}{{k!(m - k)!(n - k)!}}} } \right|}^{2}}, \\ \end{gathered} $$
(A.28)

we obtain

$$\begin{gathered} {{{\tilde {W}}}_{{mn}}}(\nu ) = n!m!{{\nu }^{{m + n}}}{{e}^{{ - \nu }}} \\ \times {{\left| {\sum\limits_{k = 0}^{\min (n,m)} {\frac{{{{{( - 1)}}^{k}}{{\nu }^{{ - k}}}}}{{k!(m - k)!(n - k)!}}} } \right|}^{2}}. \\ \end{gathered} $$
(A.29)

This relation implies, in particular, that

$${{\tilde {W}}_{{mn}}}(\nu ) = {{\tilde {W}}_{{nm}}}(\nu ).$$
(A.30)

Thus, the time dependence of the probability of transition nm, m > n, coincides with that for reverse transition mn.

APPENDIX B

The EMP energy absorbed by a charged classical oscillator by instant t is given by

$${{\varepsilon }_{{{\text{clas}}}}}(t) = q\int\limits_{ - \infty }^t {\dot {x}(t')E(t')dt'.} $$
(B.1)

The solution to the equation for a harmonic oscillator has form (see, for example, [24])

$$x(t) = \frac{q}{M}\int\limits_{ - \infty }^{ + \infty } {\frac{{E(\omega ')\exp ( - i\omega 't)}}{{\omega _{0}^{2} - \omega {\kern 1pt} {{'}^{2}} - 2i\gamma \omega '}}} \frac{{d\omega '}}{{2\pi }},$$
(B.2)

where γ is the relaxation constant. Formula (B.1) leads to expression

$$\dot {x}(t) = - i\frac{q}{M}\int\limits_{ - \infty }^{ + \infty } {\frac{{\omega 'E(\omega ')\exp ( - i\omega 't)}}{{\omega _{0}^{2} - \omega {\kern 1pt} {{'}^{2}} - 2i\gamma \omega '}}} \frac{{d\omega '}}{{2\pi }}.$$
(B.3)

Substituting this expression into (B.1), we get

$$\begin{gathered} {{\varepsilon }_{{{\text{clas}}}}}(t) = \frac{{{{q}^{2}}}}{M}\int\limits_{ - \infty }^t {dt'E(t')} \\ \times \int\limits_{ - \infty }^{ + \infty } {\frac{{d\omega '}}{{2\pi }}E(\omega ')\frac{{i\omega '\exp ( - i\omega 't)}}{{\omega {\kern 1pt} {{'}^{2}} - \omega _{0}^{2} + 2i\gamma \omega '}}} . \\ \end{gathered} $$
(B.4)

The frequency integral on the right-hand side of this equation can be evaluated using the residue theorem. In the limit γ → 0, this integral has form

$$\begin{gathered} \int\limits_{ - \infty }^{ + \infty } {\frac{{d\omega '}}{{2\pi }}\frac{{i\omega '{\text{exp}}( - i\omega '(t'\, - \,t''))}}{{\omega {\kern 1pt} {{'}^{2}} - \omega _{0}^{2} - 2i\gamma \omega '}}} \\ = \,\theta (t'\, - \,t''){\text{cos}}[{{\omega }_{0}}(t'\, - \,t'')], \\ \end{gathered} $$
(B.5)

where θ(τ) is the Heaviside theta function. Substituting the right-hand side of expression (B.5) into (B.4), we obtain

$$\begin{gathered} {{\varepsilon }_{{{\text{clas}}}}}(t) = \frac{{{{q}^{2}}}}{M}\int\limits_{ - \infty }^t {dt'E(t')\int\limits_{ - \infty }^{t'} {dt''E(t'')\cos [{{\omega }_{0}}(t'\, - t'')]} } \\ = \frac{{{{q}^{2}}}}{{2M}}\int\limits_{ - \infty }^t {dt'E(t')\int\limits_{ - \infty }^t {dt''E(t'')\cos [{{\omega }_{0}}(t'\, - t'')]} } \\ = \frac{{{{q}^{2}}}}{{2M}}{{\left| {\int\limits_{ - \infty }^t {dt'E(t')\exp (i{{\omega }_{0}}t')} } \right|}^{2}}. \\ \end{gathered} $$
(B.6)

In the transition to the second equality in (B.6), we have used the fact that the integrand is symmetric relative to the transposition of integration variables (t' ↔ t'').

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astapenko, V.A., Rosmej, F.B. & Sakhno, E.V. Dynamics of Time Evolution of Quantum Oscillator Excitation by Electromagnetic Pulses. J. Exp. Theor. Phys. 133, 125–135 (2021). https://doi.org/10.1134/S1063776121070013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121070013

Navigation