Skip to main content
Log in

Temporal dynamics of resonant scattering of an ultrashort laser pulse by an atom

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Within the framework of the second order of perturbation theory and the dipole approximation, we derived simple formulas describing the temporal dynamics of ultrashort laser pulse scattering in terms of the scattering tensor and the Fourier transform of the strength of the electric field in a pulse. This expression was used for description of resonant scattering of an ultrashort pulse by an atom. We study the dependence of the spectral scattering probability as a function of time and scattering frequency. In particular, it is shown that the time dependence of the spectral scattering probability for certain values of parameters is of oscillatory character, while the integral scattering probability is always a monotonically increasing function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.T. Hassan, A. Wirth, I. Grguras, A. Moulet, T.T. Luu, J. Gagnon, V. Pervak, E. Goulielmakis, Rev. Sci. Instrum. 83, 111301 (2012)

    Article  ADS  Google Scholar 

  2. M. Chini, K. Zhao, Z. Chang, Nat. Photon. 8, 178–186 (2014)

    Article  ADS  Google Scholar 

  3. A.V. Mitrofanov, D.A. Sidorov-Biryukov, P.B. Glek, M.V. Rozhko, E.A. Stepanov, A.D. Shutov, S.V. Ryabchuk, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov, Opt. Lett. 45, 750–753 (2020)

    Article  ADS  Google Scholar 

  4. W. Yu, N. Su, H. Song et al., Eur. Phys. J. D73, 236 (2019)

    ADS  Google Scholar 

  5. S. Ebrahimzadeh, M. Barzi, M. Lotfollahi, S.N. Tabatabaei, S. Sarikhani, Opt. Lett. 45, 923–926 (2020)

    Article  ADS  Google Scholar 

  6. V. Astapenko, Interaction of ultrafast electromagnetic pulses with matter (Springer Briefs in Physics, Heidelberg, New York, Dordrecht, London, 2013)

    Book  Google Scholar 

  7. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, J. Phys. B: At. Mol. Opt. Phys. 50, 235601 (2017)

    Article  ADS  Google Scholar 

  8. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, N.N. Moroz, Phys. Lett. A2017381, 3576–3579 (2017)

    Article  ADS  Google Scholar 

  9. V.A. Astapenko, Phys. Lett. A374, 1585 (2010)

    Article  ADS  Google Scholar 

  10. A.M. Dykhne, G.L. Yudin, Sov. Phys.-Usp. 21, 549 (1978)

    Article  ADS  Google Scholar 

  11. V.I. Matveev, J. Exp. Theor. Phys. 97, 915 (2003)

    Article  ADS  Google Scholar 

  12. D.N. Makarov, V.I. Matveev, J. Exp. Theor. Phys. 125, 189 (2017)

    Article  ADS  Google Scholar 

  13. D.N. Makarov, M.K. Eseev, K.A. Makarova, Opt. Lett. 44(12), 3042–3045 (2019)

    Article  ADS  Google Scholar 

  14. A.A. Goshev, M.K. Eseev, D.N. Makarov, J. Exp. Theor. Phys. 130, 28–34 (2020)

    Article  ADS  Google Scholar 

  15. D.N. Makarov, Opt. Express 27, 31989–32008 (2019)

    Article  ADS  Google Scholar 

  16. S. Beaulieu, A. Comby, A. Clergerie et al., Science 358, 1288–1294 (2017)

    Article  ADS  Google Scholar 

  17. M. Isinger, R.J. Squibb, D. Busto et al., Science 358, 893–896 (2017)

    Article  ADS  Google Scholar 

  18. K. Hütten, M. Mittermair, S. Stock et al., EPJ Web Conf 205, 06001 (2019)

    Article  Google Scholar 

  19. A. Kaldun, A. Blättermann, S. Donsaet et al., Science 354, 738–740 (2016)

    Article  ADS  Google Scholar 

  20. V. Gruson, L. Barreau, A. Jiménez-Galan et al., Science 354, 734–737 (2016)

    Article  ADS  Google Scholar 

  21. V. Prasad, B. Dahiya, K. Yamashita, Phys. Scr. 82, 055302 (2010)

    Article  ADS  Google Scholar 

  22. V.A. Astapenko, J. Exp. Theor. Phys. 157, 67 (2020)

    Google Scholar 

  23. V.A. Astapenko, J. Exp. Theor. Phys. 112, 193 (2011)

    Article  ADS  Google Scholar 

  24. F.B. Rosmej, V.S. Lisitsa, V.A. Astapenko, Plasma atomic physics. Springer Series on Atomic, Optical and Plasma Physics, vol. 104 (Springer, New York, 2020)

    MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by Moscow Institute of Physics and Technology (The Project No. 075-02-2019-967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Astapenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Using the standard approach in the second order of the perturbation theory and the dipole approximation, we have the following expression for the amplitude of a two-photon process (in atomic units) [24]:

$$A_{fi}^{\left( 2 \right)} \left( t \right) = \left( { - i} \right)^{2} \,\sum\limits_{n} {\int\limits_{ - \infty }^{t} {dt^{\prime}\,\int\limits_{ - \infty }^{{t^{\prime}}} {dt^{\prime\prime}\,\exp \left( {i\,\tilde{\omega }_{fn} \,t^{\prime} + i\,\tilde{\omega }_{ni} \,t^{\prime\prime}} \right)\,V_{fn} \left( {t^{\prime}} \right)\,V_{ni} \left( {t^{\prime\prime}} \right)} } } .$$
(15)

In case of the spontaneous USP scattering by an atom, the operator of sum of the electromagnetic perturbation is the two terms corresponding to interaction of the atom with the vacuum electromagnetic field and the USP field:

$$\hat{V} = \hat{V}^{vac} + \hat{V}^{E} ;\hat{V} = {\hat{\mathbf{d}}}\,\,{\mathbf{E}}^{vac} \left( t \right) + {\hat{\mathbf{d}}}\,\,{\mathbf{E}}\left( t \right)$$
(16)
$${\mathbf{E}}^{vac} \left( t \right) = {\mathbf{e^{\prime}}}^{ * } E_{0}^{vac} \left( {\omega^{\prime}} \right)\,\exp \left( {i\,\omega^{\prime}\,t} \right)$$
(17)

here \({\hat{\mathbf{d}}}\) is the operator of the electric dipole moment, \({\mathbf{E}}\left( t \right)\) and \({\mathbf{E}}^{vac} \left( t \right)\) are the strengths of the electric field in an USP and the scattered radiation field, \({\mathbf{e^{\prime}}}\) is the unit polarization vector of the scattered radiation. The vacuum field corresponds to the spontaneous photon emission during the USP scattering by an atom. In the dipole approximation, its amplitude looks like

$$E_{0}^{vac} \left( {\omega^{\prime}} \right) = \sqrt {\frac{{2\,\pi \,\omega^{\prime}}}{\Lambda }} ,$$
(18)

here \(\Lambda\) is the normalization volume. We present the strength of the electric field in an USP in terms of its Fourier transform:

$${\mathbf{E}}\left( t \right) = {\mathbf{e}}\,E\left( t \right) = {\mathbf{e}}\int\limits_{ - \infty }^{\infty } {E\left( {\tilde{\omega }} \right)\,\exp \left( { - i\,\tilde{\omega }\,t} \right)\,{{d\tilde{\omega }} \mathord{\left/ {\vphantom {{d\tilde{\omega }} {2\,\pi }}} \right. \kern-\nulldelimiterspace} {2\,\pi }}}$$
(19)

For the spontaneous scattering amplitude with no change of a target state, it follows from (15):

$$A_{11}^{sc} \left( t \right) = \left( { - i} \right)^{2} \,\sum\limits_{n\,M} {\int\limits_{ - \infty }^{t} {dt^{\prime}\,\int\limits_{ - \infty }^{{t^{\prime}}} {dt^{\prime\prime}\,\exp \left( {i\,\tilde{\omega }_{n1} \,\left( {t^{\prime\prime} - t^{\prime}} \right)} \right)\,\left[ {V_{1n}^{vac} \left( {t^{\prime}} \right)\,V_{n1}^{E} \left( {t^{\prime\prime}} \right) + V_{1n}^{E} \left( {t^{\prime}} \right)\,V_{n1}^{vac} \left( {t^{\prime\prime}} \right)} \right]} } }$$
(20)

Here we single out the summation over the quantum numbers of the projection of the angular momentum M and introduce the notation

$$\tilde{\omega }_{n1} = \omega_{n1} - i\,\gamma_{n1} .$$
(21)

Summing over the angular quantum numbers M, we have:

$$A_{11}^{sc} \left( t \right) = - \frac{{\left( {{\mathbf{e^{\prime}}}^{ * } \,{\mathbf{e}}} \right)}}{2\,\pi }E_{0}^{vac} \left( {A_{1} + A_{2} } \right)$$
(22)

where

$$A_{1} \left( t \right) = \sum\limits_{n} {\int\limits_{ - \infty }^{t} {dt^{\prime}} \int\limits_{ - \infty }^{{t^{\prime}}} {dt^{\prime\prime}} \,\left| {d_{n1} } \right|^{2} } \exp \left( {i\,\omega^{\prime}\,t^{\prime}} \right)\,\int\limits_{ - \infty }^{\infty } {d\tilde{\omega }\,\exp \left( { - i\,\tilde{\omega }\,t^{\prime\prime}} \right)\,E\left( {\tilde{\omega }} \right)\,\exp \left[ {i\,\tilde{\omega }_{n1} \,\left( {t^{\prime\prime} - t^{\prime}} \right)} \right]}$$
(23)
$$A_{2} \left( t \right) = \sum\limits_{n} {\int\limits_{ - \infty }^{t} {dt^{\prime}} \int\limits_{ - \infty }^{{t^{\prime}}} {dt^{\prime\prime}} \,\left| {d_{n1} } \right|^{2} } \exp \left( {i\,\omega^{\prime}\,t^{\prime\prime}} \right)\,\int\limits_{ - \infty }^{\infty } {d\tilde{\omega }\,\exp \left( { - i\,\tilde{\omega }\,t^{\prime}} \right)\,E\left( {\tilde{\omega }} \right)\,\exp \left[ {i\,\tilde{\omega }_{n1} \,\left( {t^{\prime\prime} - t^{\prime}} \right)} \right]}$$
(24)

After integration with respect to the time \(t^{\prime\prime}\), we arrive at the expressions

$$A_{1} \left( t \right) = - i\,\sum\limits_{n} {\int\limits_{ - \infty }^{t} {dt^{\prime}} \,} \exp \left( {i\,\omega^{\prime}\,t^{\prime}} \right)\,\int\limits_{ - \infty }^{\infty } {d\tilde{\omega }\,E\left( {\tilde{\omega }} \right)\exp \left( { - i\,\tilde{\omega }\,t^{\prime}} \right)\,\frac{{\left| {d_{n1} } \right|^{2} }}{{\tilde{\omega }_{n1} - \tilde{\omega }}}}$$
(25)
$$A_{2} \left( t \right) = - i\sum\limits_{n} {\int\limits_{ - \infty }^{t} {dt^{\prime}} \,} \exp \left( {i\,\omega^{\prime}\,t^{\prime}} \right)\,\int\limits_{ - \infty }^{\infty } {d\tilde{\omega }\,E\left( {\tilde{\omega }} \right)\exp \left( { - i\,\tilde{\omega }\,t^{\prime}} \right)\,\frac{{\left| {d_{n1} } \right|^{2} }}{{\tilde{\omega }_{n1} + \omega^{\prime}}}}$$
(26)

Substituting (25) and (26) in (22), we obtain:

$$A_{11}^{sc} \left( t \right) = - i\left( {{\mathbf{e^{\prime}}}^{ * } \,{\mathbf{e}}} \right)\,E_{0}^{vac} \left( {\omega^{\prime}} \right)\,D\left( {t,\omega^{\prime}} \right)$$
(27)
$$D\left( {t,\omega^{\prime}} \right) = \int\limits_{ - \infty }^{t} {dt^{\prime}\,\exp \left( {i\,\omega^{\prime}\,t^{\prime}} \right)\,\int\limits_{ - \infty }^{\infty } {c_{11} \left( {\omega^{\prime},\tilde{\omega }} \right)\,E\left( {\tilde{\omega },\omega ,\tau } \right)\,\exp \left( { - i\,\tilde{\omega }\,t^{\prime}} \right)\frac{{d\tilde{\omega }}}{2\,\pi }\,\,} }$$
(28)

It should be noted that the function (14) is an incomplete Fourier transform of the dipole moment induced by an USP.

The scattering tensor c11 in the formula (28) is equal to

$$c_{11} \left( {\omega^{\prime},\tilde{\omega }} \right) = \sum\limits_{n} {\left| {d_{n1} } \right|^{2} \,\left\{ {\frac{1}{{\omega_{n1} - \tilde{\omega } - i\,\gamma_{n1} }} + \frac{1}{{\omega_{n1} + \omega^{\prime} - i\,\gamma_{n1} }}} \right\}}$$
(29)

For the differential scattering probability, after averaging over the polarization of the scattered radiation we have

$$dW\left( t \right) = \left\langle {\left| {A_{11}^{sc} \left( t \right)} \right|^{2} } \right\rangle_{{{\mathbf{e^{\prime}}}}} \,d\Gamma^{\prime}$$
(30)
$$\left\langle {\left| {A_{11}^{sc} \left( t \right)} \right|^{2} } \right\rangle_{{{\mathbf{e^{\prime}}}}} \, = \left( {1 - {\mathbf{n^{\prime}e}}} \right)\frac{{\omega^{\prime}}}{\Lambda }\,\left| {D\left( {t,\omega^{\prime}} \right)} \right|^{2}$$
(31)

where \({\mathbf{n^{\prime}}}\) is the unit vector in the direction of scattered radiation,

$$d\Gamma^{\prime} = \Lambda \,\frac{{\omega^{{\prime}{2}} }}{{8\,\pi^{3} \,c^{3} }}\,d\omega^{\prime}\,d\Omega_{{{\mathbf{n^{\prime}}}}} ,$$
(32)

is the differential statistical weight corresponding to scattered radiation emitted in a given spectral range and a unit solid angle around the \({\mathbf{n^{\prime}}}\) direction. After the integration over the solid angle, we finally arrive at the expression

$$\frac{dW\left( t \right)}{{d\omega^{\prime}}} = \frac{{2\,\omega^{{\prime}{3}} }}{{3\,\pi \,c^{3} }}\,\left| {D\left( {t,\omega^{\prime}} \right)} \right|^{2}$$
(33)

This equation, in view of (28), coincides with the formula (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astapenko, V.A. Temporal dynamics of resonant scattering of an ultrashort laser pulse by an atom. Appl. Phys. B 126, 110 (2020). https://doi.org/10.1007/s00340-020-07465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07465-w

Navigation