Skip to main content
Log in

Self-Consistent Model of Extragalactic Neutrino Flux from Evolving Blazar Population

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study constraints on the population of neutrino emitting blazars imposed by the absence of doublets in astrophysical muon neutrino signal and z \( \simeq \) 0.3 redshift of nearest identified neutrino-emitting blazar (an order of magnitude further away than the nearest γ-ray emitting blazar). We show that in spite of the absence of correlation of neutrino arrival directions with positions of gamma-ray emitting blazars, cumulative blazar flux could explain most of astrophysical neutrino flux measured in muon neutrino channel. This is possible if the population of neutrino emitting blazars has experienced rapid positive evolution at least as (1 + z)5 at z \( \lesssim \) 1. Such a model avoids previously derived constraint on the low level of blazar contribution to extragalactic neutrino flux because gamma-ray and neutrino fluxes are dominated by different sets of blazars. Rapid evolution of neutrino emitting blazars could be explained by the fact that only rapidly evolving sub-population of blazars, which can include parts of Flat Spectrum Radio Quasar and bright BL Lac populations, are efficient neutrino sources, although their neutrino luminosity has to be systematically lower than the γ-ray luminosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Collab., Science (Washington, DC, U. S.) 342 (6161) (2013).

  2. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, C. Arguelles, T. C. Arlen, et al., Phys. Rev. Lett. 113, 101101 (2014); arXiv: 1405.5303.

    Article  ADS  Google Scholar 

  3. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, M. Archinger, C. Arguelles, et al., Astrophys. J. 833, 3 (2016).

    Article  ADS  Google Scholar 

  4. A. Neronov, M. Kachelrieß, and D. V. Semikoz, Phys. Rev. D 98, 023004 (2018); arXiv: 1802.09983.

  5. A. Neronov and D. Semikoz, Phys. Rev. D 93, 123002 (2016); arXiv: 1603.06733.

  6. A. Neronov and D. Semikoz, Astropart. Phys. 75, 60 (2016); arXiv: 1509.03522.

  7. A. Neronov and D. Semikoz, Astropart. Phys. 72, 32 (2016); arXiv: 1412.1690.

    Article  ADS  Google Scholar 

  8. A. Neronov, D. Semikoz, and C. Tchernin, Phys. Rev. D 89, 103002 (2014); arXiv: 1307.2158.

    Article  ADS  Google Scholar 

  9. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, I. A. Samarai, D. Altmann, K. Andeen, T. Anderson, et al., Astrophys. J. 849, 67 (2017); arXiv: 1707.03416.

  10. A. Albert, M. Andrée, M. Anghinolfi, M. Ardid, J.‑J. Aubert, J. Aublin, T. Avgitas, B. Baret, J. Barrios-Martí, S. Basa, et al., arXiv: 1808.03531 (2018).

  11. A. Albert, M. Andrée, M. Anghinolfi, G. Anton, M. Ardid, J.-J. Aubert, T. Avgitas, B. Baret, J. Barrios-Martí, S. Basa, B. Belhorma, V. Bertin, S. Biagi, R. Bormuth, S. Bourret, et al., Phys. Rev. D 96, 062001 (2017); arXiv: 1705.00497.

  12. G. Giacinti, M. Kachelrieß, and D. V. Semikoz, J. Cosmol. Astropart. Phys. 7, 051 (2018); arXiv: 1710.08205.

  13. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, M. Archinger, C. Arguelles, T. C. Arlen, J. Auffenberg, X. Bai, S. W. Barwick, V. Baum, R. Bay, and T. I. Collab., Astrophys. J. 809, 98 (2015).

    Article  ADS  Google Scholar 

  14. E. Waxman and J. Bahcall, Phys. Rev. D 59, 023002 (1999); hep-ph/9807282.

    Article  ADS  Google Scholar 

  15. G. Giacinti, M. Kachelrieß, O. Kalashev, A. Neronov, and D. V. Semikoz, Phys. Rev. D 92, 083016 (2015); arXiv: 1507.07534.

  16. M. Kachelrieß, O. Kalashev, S. Ostapchenko, and D. V. Semikoz, Phys. Rev. D 96, 083006 (2017); arXiv: 1704.06893.

  17. V. S. Beresinsky and G. T. Zatsepin, Phys. Lett. B 28, 423 (1969).

    Article  ADS  Google Scholar 

  18. V. S. Berezinskii and A. I. Smirnov, Astrophys. Space Sci. 32, 461 (1975).

    Article  ADS  Google Scholar 

  19. X. Rodrigues, A. Fedynitch, S. Gao, D. Boncioli, and W. Winter, Astrophys. J. 854, 54 (2018); arXiv: 1711.02091.

  20. A. Y. Neronov and D. V. Semikoz, Phys. Rev. D 66, 123003 (2002); hep-ph/0208248.

    Article  ADS  Google Scholar 

  21. A. Neronov, D. Semikoz, and S. Sibiryakov, Mon. Not. R. Astron. Soc. 391, 949 (2008); arXiv: 0806.2545.

    Article  ADS  Google Scholar 

  22. A. Y. Neronov, D. V. Semikoz, and I. I. Tkachev, New J. Phys. 11, 065015 (2009); arXiv: 0712.1737.

    Article  ADS  Google Scholar 

  23. K. Mannheim and P. L. Biermann, Astron. Astrophys. 221, 211 (1989).

    ADS  Google Scholar 

  24. K. Mannheim, Astron. Astrophys. 269, 67 (1993); astro-ph/9302006.

    ADS  Google Scholar 

  25. C. Tchernin, J. A. Aguilar, A. Neronov, and T. Montaruli, Astron. Astrophys. 555, A70 (2013); arXiv: 1305.3524.

    Article  ADS  Google Scholar 

  26. M. Cerruti, A. Zech, C. Boisson, G. Emery, S. Inoue, and J.-P. Lenain, arXiv: 1810.08825 (2018).

  27. M. Cerruti, A. Zech, C. Boisson, G. Emery, S. Inoue, and J.-P. Lenain, arXiv: 1807.04335 (2018).

  28. R.-Y. Liu, K. Wang, R. Xue, A. M. Taylor, X.-Y. Wang, Z. Li, and H. Yan, arXiv: 1807.05113 (2018).

  29. C. Righi, F. Tavecchio, and S. Inoue, arXiv; 1807.10506 (2018).

  30. P. Padovani, P. Giommi, E. Resconi, T. Glauch, B. Arsioli, N. Sahakyan, and M. Huber, Mon. Not. R. Astron. Soc. 480, 192 (2018); arXiv: 1807.04461.

  31. A. Keivani, K. Murase, M. Petropoulou, D. B. Fox, S. B. Cenko, S. Chaty, A. Coleiro, J. J. DeLaunay, S. Dimitrakoudis, P. A. Evans, J. A. Kennea, F. E. Marshall, A. Mastichiadis, J. P. Osborne, M. Santander, A. Tohuvavohu, and C. F. Turley, Astrophys. J. 864, 84 (2018); arXiv: 1807.04537.

  32. S. Ansoldi, L. A. Antonelli, C. Arcaro, D. Baack, A. Babić, B. Banerjee, P. Bangale, U. Barres de Almeida, J. A. Barrio, J. Becerra González, W. Bednarek, E. Bernardini, R. C. Berse, A. Berti, J. Besenrieder, et al., Astrophys. J. Lett. 863, L10 (2018); arXiv: 1807.04300.

  33. K. Murase, F. Oikonomou, and M. Petropoulou, Astrophys. J. 865, 124 (2018); arXiv: 1807.04748.

  34. S. Gao, A. Fedynitch, W. Winter, and M. Pohl, Nat. Astron. (2018); arXiv: 1807.04275.

  35. A. Palladino, X. Rodrigues, S. Gao, and W. Winter, arXiv: 1806.04769 (2018).

  36. A. Neronov, D. V. Semikoz, and K. Ptitsyna, Astron. Astrophys. 603, A135 (2017); arXiv: 1611.06338.

  37. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, et al., Astrophys. J. 835, 45 (2017); arXiv: 1611.03874.

  38. M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, I. Al Samarai, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, C. Argüelles, J. Auffenberg, S. Axani, and E. A. Bagherpour, Science (Washington, DC, U. S.) 361 (6398) (2018).

  39. M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, et al., Science (Washington, DC, U. S.) (2018).

  40. K. Murase and E. Waxman, Phys. Rev. D 94, 103006 (2016); arXiv: 1607.01601.

  41. S. Paiano, R. Falomo, A. Treves, and R. Scarpa, Astrophys. J. Lett. 854, L32 (2018); arXiv: 1802.01939.

  42. M. Ajello, M. S. Shaw, R. W. Romani, C. D. Dermer, L. Costamante, O. G. King, W. Max-Moerbeck, A. Readhead, A. Reimer, J. L. Richards, and M. Stevenson, Astrophys. J. 751, 108 (2012); arXiv: 1110.3787.

    Article  ADS  Google Scholar 

  43. M. Ajello, R. W. Romani, D. Gasparrini, M. S. Shaw, J. Bolmer, G. Cotter, J. Finke, J. Greiner, S. E. Healey, O. King, W. Max-Moerbeck, P. F. Michelson, W. J. Potter, A. Rau, A. C. S. Readhead, J. L. Richards, and P. Schady, Astrophys. J. 780, 73 (2014); arXiv: 1310.0006.

    Article  ADS  Google Scholar 

  44. E. M. Sadler, R. D. Cannon, T. Mauch, P. J. Hancock, D. A. Wake, N. Ross, S. M. Croom, M. J. Drinkwater, A. C. Edge, D. Eisenstein, A. M. Hopkins, H. M. Johnston, R. Nichol, K. A. Pimbblet, R. de Propris, I. G. Roseboom, D. P. Schneider, and T. Shanks, Mon. Not. R. Astron. Soc. 381, 211 (2007); astro-ph/0612019.

    Article  ADS  Google Scholar 

  45. V. Smolčić, G. Zamorani, E. Schinnerer, S. Bardelli, M. Bondi, L. Bîrzan, C. L. Carilli, P. Ciliegi, M. Elvis, C. D. Impey, A. M. Koekemoer, A. Merloni, T. Paglione, M. Salvato, M. Scodeggio, N. Scoville, and J. R. Trump, Astrophys. J. 696, 24 (2009); arXiv: 0901.3372.

    Article  ADS  Google Scholar 

  46. G. Hasinger, T. Miyaji, and M. Schmidt, Astron. Astrophys. 441, 417 (2005); astro-ph/0506118.

    Article  ADS  Google Scholar 

  47. K. Murase, arXiv: 1511.01590 (2015).

  48. A. Dekker and S. Ando, J. Cosmol. Astropart. Phys. 2019, 002 (2019); arXiv: 1811.02576.

  49. T. J.-L. Courvoisier, Astron. Astrophys. Rev. 9, 1 (1998); astro-ph/9808147.

    Article  ADS  Google Scholar 

  50. F. Acero, M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, A. Belfiore, R. Bellazzini, E. Bissaldi, R. D. Blandford, E. D. Bloom, et al., Astrophys. J. Suppl. 218, 23 (2015); arXiv: 1501.02003.

  51. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, et al., Astrophys. J. 835, 151 (2017); arXiv: 1609.04981.

  52. M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, E. Bissaldi, R. D. Blandford, E. D. Bloom, E. Bottacini, T. J. Brandt, et al., Astrophys. J. 799, 86 (2015); arXiv: 1410.3696.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Semikoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neronov, A., Semikoz, D. Self-Consistent Model of Extragalactic Neutrino Flux from Evolving Blazar Population. J. Exp. Theor. Phys. 131, 265–272 (2020). https://doi.org/10.1134/S1063776120050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120050088

Navigation