Skip to main content
Log in

Analysis of Zero-Point Isotherm of Hydrogen Isotopes in the Ultrahigh Pressure Range

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We describe the experimental setup, as well as results and analysis of experiments on isothermal compression of stable hydrogen isotopes, viz., protium (H2) and deuterium (D2), in the initial (at P0 = 0.1 MPa) solid state up to pressure of 550 GPa using facilities based on a magnetocumulative generator and an X-ray diffraction complex including a betatron and an X-ray image recording system. We consider the points obtained on the “cold” isentrope (T0 = 5–13 K) for protium and deuterium. The results are compared with those obtained using static and other dynamic facilities, as well as with the results of various calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. The decrease in the initial field to values smaller than 100 kG sharpens the compression pulse so that it stops being isentropic. On the other hand, to produce the initial field exceeding 200 kG, the capacitor bank should be charged to a voltage exceeding 20 kV, for which the probability of capacitor band breakdown becomes significant.

  2. In experiments on quasi-isentropic compression, the EOS for hydrogen in the Kopyshev–Khrustalev form [52] are often used for describing the process. This is quite justified because this wide-range EOS correctly describes the high-density hydrogen plasma that is usually detected in such experiments. As regards the isentropic compression (i.e., the region of high pressures but at low temperatures corresponding to a condensed substance), it is more expedient to use the EOS based directly on experimental data corresponding to this region of temperatures and pressures for describing the compression process. It is precisely the EOS with the constants of the “cold” part, which were borrowed from [34].

REFERENCES

  1. V. E. Fortov, Extremal States of Matter (Fizmatlit, Moscow, 2009; Springer, Switzerland, 2016).

  2. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  3. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  4. E. Babaev, A. Sudbo, and N. W. Ashcroft, Nature (London, U.K.) 431, 666 (2004).

    Article  ADS  Google Scholar 

  5. S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, Nature (London, U.K.) 431, 669 (2004).

    Article  ADS  Google Scholar 

  6. E. Gregoryanz, A. F. Goncharov, K. Matsuishi, et al., Phys. Rev. Lett. 90, 175701 (2003).

    Article  ADS  Google Scholar 

  7. S. Deemyad and I. F. Silvera, Phys. Rev. Lett. 100, 155701 (2008).

    Article  ADS  Google Scholar 

  8. M. I. Eremets and I. A. Trojan, JETP Lett. 89, 174 (2009).

    Article  ADS  Google Scholar 

  9. M. I. Eremets and I. A. Troyan, Nat. Mater. 10, 927 (2011).

    Article  ADS  Google Scholar 

  10. R. T. Howie, C. L. Guillaume, T. Scheler, et al., Phys. Rev. Lett. 108, 125501 (2012).

    Article  ADS  Google Scholar 

  11. P. Loubeyre, S. Brygoo, J. Eggert, et al., Phys. Rev. B 86, 144115 (2012).

    Article  ADS  Google Scholar 

  12. M. Zaghoo, A. Salamat, and I. F. Silvera, Phys. Rev. B 93, 155128 (2016).

    Article  ADS  Google Scholar 

  13. R. P. Dias and I. F. Silvera, Science (Washington, DC, U. S.) 355, 715 (2017).

    Article  ADS  Google Scholar 

  14. P. M. Celliers, M. Millot, S. Brygoo, et al., Science (Washington, DC, U. S.) 361, 677 (2018).

    Article  ADS  Google Scholar 

  15. E. G. Maksimov and Yu. I. Shilov, Phys. Usp. 42, 1121 (1999).

    Article  ADS  Google Scholar 

  16. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012).

    Article  ADS  Google Scholar 

  17. A. N. Utyuzh and A. V. Mikheenkov, Phys. Usp. 60, 886 (2017).

    Article  ADS  Google Scholar 

  18. P. W. Bridgman, The Physics of High Pressure (Bell, London, 1952).

    MATH  Google Scholar 

  19. A. Jayaraman, Rev. Sci. Instrum. 57, 1013 (1986).

    Article  ADS  Google Scholar 

  20. Yu. Akahama, M. Nishimura, H. Kawamura, et al., Phys. Rev. B 82, 060101(R) (2010).

  21. S. J. Clark, G. J. Ackland, and J. Crain, Phys. Rev. B 52, 15035 (1995).

    Article  ADS  Google Scholar 

  22. P. Loubeyre, R. LeToullec, D. Hausermann, et al., Nature (London, U.K.) 383, 702 (1996).

    Article  ADS  Google Scholar 

  23. L. V. Al’tshuler, Sov. Phys. Usp. 8, 52 (1965).

    Article  ADS  Google Scholar 

  24. A. N. Mostovych, Y. Chan, T. Lehecha, et al., Phys. Plasmas 8, 2281 (2001).

    Article  ADS  Google Scholar 

  25. R. F. Trunin, G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, G. V. Simakov, V. D. Urlin, and A. N. Shukin, Tech. Phys. 51, 907 (2006).

    Article  Google Scholar 

  26. R. F. Trunin, V. D. Urlin, and A. B. Medvedev, Phys. Usp. 53, 577 (2010).

    Article  ADS  Google Scholar 

  27. B. K. Godwal, S. K. Sikka, and R. Chidambaram, Phys. Rep. 102, 121 (1983).

    Article  ADS  Google Scholar 

  28. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Sov. Phys. JETP 48, 847 (1978).

    ADS  Google Scholar 

  29. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, I. P. Maksimkin, V. A. Ogorodnikov, and A. V. Ryzhkov, JETP Lett. 107, 168 (2018).

    Article  ADS  Google Scholar 

  30. G. V. Boriskov, A. I. Bykov, M. I. Dolotenko, N. I. Egorov, Yu. B. Kudasov, V. V. Platonov, V. D. Selemir, and O. M. Tatsenko, Phys. Usp. 54, 421 (2011).

    Article  ADS  Google Scholar 

  31. S. N. Ishmaev, I. P. Sadikov, A. A. Chernyshov, et al., Sov. Phys. JETP 57, 228 (1983).

    Google Scholar 

  32. S. N. Ishmaev, I. P. Sadikov, A. A. Chernyshov, et al., Sov. Phys. JETP 62, 721 (1985).

    Google Scholar 

  33. G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., J. Phys.: Conf. Ser. 121, 072001 (2008).

    Google Scholar 

  34. G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., Contrib. Plasma Phys. 51, 339 (2011).

    Article  ADS  Google Scholar 

  35. V. V. Matveev, I. V. Medvedeva, V. V. Prut, et al., JETP Lett. 39, 261 (1984).

    ADS  Google Scholar 

  36. R. G. Greene, H. Lue, and A. L. Ruoff, Phys. Rev. Lett. 73, 2075 (1994).

    Article  ADS  Google Scholar 

  37. L. V. Al’tshuller, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Sov. Phys. JETP 11, 573 (1960).

    Google Scholar 

  38. V. A. Simonenko, N. P. Voloshin, A. S. Vladimirov, et al., Sov. Phys. JETP 61, 869 (1985).

    Google Scholar 

  39. W. J. Nellis, J. A. Moriarty, A. C. Mitchell, et al., Phys. Rev. Lett. 60, 1414 (1988).

    Article  ADS  Google Scholar 

  40. G. V. Boriskov, V. I. Timareva, S. S. Sokolov, and A. I. Panov, in Megagauss XI, Proceedings of the 11th International Conference on Megagauss Magnetic Field Generation and Related Topics, London, Sept. 10–14,2006, Ed. by I. Smith and B. Novac (London, UK, 2007), p. 269.

  41. G. V. Boriskov and V. I. Timareva, in Proceedings of the 8th Kharitonov’s Readings on Problems of High Energy Density Physics, Sarov, March 21–24,2006 (RFYaTs-VNIIEF, Sarov, 2006), p. 516.

  42. G. V. Boriskov and V. I. Timareva, in Proceedings of the 8th Kharitonov’s Readings on Problems of High Energy Density Physics, Sarov, March 21–24,2006 (RFYaTs-VNIIEF, Sarov, 2006), p. 509.

  43. G. V. Boriskov, V. I. Timareva, and S. S. Sokolov, in Proceedings of the 10th Kharitonov’s Readings on Powerful Lasers and High Energy Density Physics Research, Sarov, March 11–14,2008, Ed. by S. R. Garanin (RFYaTs-VNIIEF, Sarov, 2008), p. 285.

  44. A. I. Pavlovskii, G. D. Kuleshov, G. V. Sklizkov, et al., Sov. Phys. Dokl. 10, 30 (1965).

    ADS  Google Scholar 

  45. Y. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, and A. A. Volkov, in Proceedings of the 11th IEEE Pulsed Power Conference, Ed. by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1998), p. 1663.

  46. N. I. Egorov, Yu. P. Kuropatkin, G. V. Boriskov, et al., in Proceedings of the 20th Kharitonov’s Readings on Application of Laser Technology to Solve Problems in High Energy Density Physics, Apr. 17–20,2018 (RFYaTs-VNIIEF, Sarov, 2018), p. 151.

  47. N. I. Egorov, G. V. Boriskov, A. I. Bykov, et al., Contrib. Plasma Phys. 51, 333 (2011).

    Article  ADS  Google Scholar 

  48. A. I. Pavlovskii, A. A. Karpikov, V. I. Mamyshev, et al., in Megagauss Fields and Pulsed Power Systems, Ed. by V. M. Titov and G. A. Shvetsov (Nova Science, New York, 1990), p. 163.

    Google Scholar 

  49. G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., in Proceedings of the 18th Kharitonov’s Readings on Problems of High Energy Physics, Apr. 19–22,2016 (RFYaTs-VNIIEF, Sarov, 2017), Vol. 2, p. 187.

  50. G. V. Boriskov, A. I. Bykov, N. I. Egorov, M. I. Dolotenko, V. N. Pavlov, I. S. Strelkov, V. I. Timareva, and S. I. Belov, Combust. Explos., Shock Waves 54, 527 (2018).

    Article  Google Scholar 

  51. P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, J. Phys. C 19, L467 (1986).

    ADS  Google Scholar 

  52. V. P. Kopyshev and V. V. Khrustalev, Prikl. Mekh. Tekh. Fiz., No. 1, 122 (1980).

  53. L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, Prikl. Mekh. Tekh. Fiz., No. 1, 134 (1987).

  54. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, in Experimental Data on Shock Wave Compression Adiabatic Expansion of Condensed Matter, Ed. by R. F. Trunin (RFYaTs-VNIIEF, Sarov, 2006), p. 260 [in Russian].

  55. G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., in Proceedings of the 17th Kharitonov’s Readings on Extreme States of Matter. Detonation. Shock Waves, Sarov, March 23–27,2015 (RFYaTs-VNIIEF, Sarov, 2015), p. 187.

  56. V. P. Kopyshev and V. D. Urlin, in Shock Waves and Extreme States of Matter, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000), p. 297 [in Russian].

    Google Scholar 

  57. A. Becker, N. Nettelmann, B. Holst, and R. Redmer, Phys. Rev. B 88, 0451229 (2013).

    Article  Google Scholar 

  58. M. V. Zhernokletov, V. A. Arinin, V. N. Buzin, et al., in 65 Years of VNIIEF. Physics and Technology of High Energy Densities (RFYaTs-VNIIEF, Sarov, 2011), No. 2, p. 178 [in Russian].

  59. T. W. Barbee III, A. Garcia, and M. L. Cohen, Phys. Rev. Lett. 62, 1150 (1989).

    Article  ADS  Google Scholar 

  60. V. Natoli, R. M. Martin, and D. M. Ceperley, Phys. Rev. Lett. 70, 1952 (1993).

    Article  ADS  Google Scholar 

  61. E. Kaxiras and Z. Guo, Phys. Rev. B 49, 11822 (1994).

    Article  ADS  Google Scholar 

  62. V. Natoli, R. M. Martin, and D. M. Ceperley, Phys. Rev. Lett. 74, 1601 (1995).

    Article  ADS  Google Scholar 

  63. C. Pierleoni, D. M. Ceperley, and M. Holzmann, Phys. Rev. Lett. 93, 146402 (2004).

    Article  ADS  Google Scholar 

  64. G. Mazzola, S. Yunoki, and S. Sorella, Nat. Commun. 5, 3487 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This study was financed by the International Science and Technology Center (project nos. 2564 and 2564.2) and the Russian Federal Nuclear Center VNIIEF, as well as by state contracts with “Rosatom” corporation.

The results were reported at the seminar guided by V.P. Neznamov and B.A. Nadykto at the Institute of Theoretical and Mathematical Physics, Russian Federal Nuclear Center VNIIEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Boriskov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boriskov, G.V., Bykov, A.I., Egorov, N.I. et al. Analysis of Zero-Point Isotherm of Hydrogen Isotopes in the Ultrahigh Pressure Range. J. Exp. Theor. Phys. 130, 183–197 (2020). https://doi.org/10.1134/S1063776120010148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010148

Navigation