Skip to main content
Log in

Nonresonant Processes as a Basis for the Formation of New Relaxation Channels in the Theory of Quantum Optical Systems

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The mechanisms for the pumping and decay of an “isolated” oscillator that can interact only nonresonantly with a neighboring oscillator of different frequency are presented. We show that if this neighboring oscillator is coupled to a broadband heat-bath field, the isolated oscillator begins to interact with this heat-bath field. A new relaxation channel attributable to the quantum interference of the interacting systems that is difficult or impossible to justify in terms of traditional approaches emerges as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. W. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1974).

    MATH  Google Scholar 

  2. F. Haake, Springer Tracts Mod. Phys. 66, 1 (1973).

    Article  Google Scholar 

  3. B. Davies, Quantum Theory of Open Systems (Academic, New York, 1972).

    Google Scholar 

  4. G. Lindblad, Comm. Math. Phys. 40, 147 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Gorini, A. Kossakowski, and E. C. G. Sundarsham, J. Math. Phys. 17, 821 (1976).

    Article  ADS  Google Scholar 

  6. T. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bôas, Phys. Rev. A 78, 053805 (2008).

    Article  ADS  Google Scholar 

  7. C. L. Cortes, M. Otten, and S. K. Gray, Phys. Rev. B 99, 014107 (2019).

    Article  ADS  Google Scholar 

  8. C. J. Villas-Bôas and D. Z. Rossatto, Phys. Rev. Lett. 122, 123604 (2019).

    Article  ADS  Google Scholar 

  9. Ze-an Peng, Guo-qing Yang, Qing-lin Wu, and Gao-xiang Li, Phys. Rev. A 99, 033819 (2019).

    Article  ADS  Google Scholar 

  10. A. Tugen and S. Kocaman, Opt. Commun. 436, 146 (2019).

    Article  ADS  Google Scholar 

  11. Th. K. Mavrogordatos, F. Barratt, U. Asari, P. Szafulski, E. Ginossar, and M. H. Szymańska, Phys. Rev. A 97, 033828 (2018).

    Article  ADS  Google Scholar 

  12. M. Malekakhlagh and A. W. Rodriguez, Phys. Rev. Lett. 122, 043601 (2019).

    Article  ADS  Google Scholar 

  13. O. Scarlatella, A. Clerk, and M. Schiro, New J. Phys. 21, 043040 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. B. Klimov, J. L. Romero, J. Delgado, and L. L. Sanchez-Soto, J. Opt. B: Quantum Semiclass. Opt. 5, 34 (2003).

    Article  ADS  Google Scholar 

  15. K. Lalumiere, J. M. Gambetta, and A. Blais, Phys. Rev. A 81, 040301(R) (2010).

  16. M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).

    Article  ADS  Google Scholar 

  17. C. D. Ogden, E. K. Irish, and M. S. Kim, Phys. Rev. A 78, 063805 (2008).

    Article  ADS  Google Scholar 

  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ., Cambridge, 1995; Fizmatlit, Moscow, 2000).

  19. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

    Book  Google Scholar 

  20. D. S. Mogilevtsev and S. Ya. Kilin, Quantum Optics Methods (Belarusskaya Nauka, Minsk, 2007) [in Russian].

    Google Scholar 

  21. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).

    MATH  Google Scholar 

  22. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  23. A. M. Basharov, J. Exp. Theor. Phys. 115, 371 (2012).

    Article  ADS  Google Scholar 

  24. A. I. Trubilko and A. M. Basharov, J. Exp. Theor. Phys. 129, 339 (2019).

    Article  ADS  Google Scholar 

  25. A. Levy and R. Kozloff, Europhys. Lett. 107, 20004 (2014).

    Article  ADS  Google Scholar 

  26. A. S. Trushechkin and I. V. Volovich, Europhys. Lett. 113, 30005 (2016).

    Article  Google Scholar 

  27. A. E. Teretenkov, Mat. Zam. 100, 636 (2016).

    Article  MathSciNet  Google Scholar 

  28. A. E. Teretenkov, Cand. Sci. (Phys. Math.) Dissertation (Lomonosov Mosc. State Univ., Moscow, 2018).

  29. C. Joshi, P. Ohberg, J. D. Cresser, and E. Andersson, Phys. Rev. A 90, 063815 (2014).

    Article  ADS  Google Scholar 

  30. D. F. Walls, Z. Phys. 234, 231 (1970).

    Article  ADS  Google Scholar 

  31. L. E. Estes, T. H. Keil, and L. M. Narducci, Phys. Rev. 175, 286 (1968).

    Article  ADS  Google Scholar 

  32. N. M. Kryloff and N. N. Bogoliuboff, Introduction to Non-Linear Mechanics (Princeton Univ. Press, Princeton, 1950; Regular. Khaotich. Dinamika, Moscow, 2004).

  33. N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Fizmatlit, Moscow, 1958; Hindustan, New York, 1961).

  34. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Interactions of Light with Matter (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  35. V. N. Bogaevski and A. Povzner, Algebraic Methods in Nonlinear Perturbation Theory (Springer, Berlin, 1991).

    Book  Google Scholar 

  36. A. M. Basharov, JETP Lett. 94, 27 (2011).

    Article  ADS  Google Scholar 

  37. A. M. Basharov, JETP Lett. 107, 143 (2018).

    Article  ADS  Google Scholar 

  38. A. I. Trubilko and A. M. Basharov, JETP Lett. 109, 77 (2019).

    Article  ADS  Google Scholar 

  39. P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta 28, 211 (1981).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 19-02-00234a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Trubilko or A. M. Basharov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubilko, A.I., Basharov, A.M. Nonresonant Processes as a Basis for the Formation of New Relaxation Channels in the Theory of Quantum Optical Systems. J. Exp. Theor. Phys. 130, 62–68 (2020). https://doi.org/10.1134/S1063776119120100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120100

Navigation