Skip to main content
Log in

Quasi-Classical Description of the “Quantum Bottleneck” Effect for Thermal Relaxation of an Atom in a Resonator

  • I. MATHEMATICAL MODELING
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

We consider the escape of a photon from a single-mode optical cavity with a controlled variable intensity. The source of the photon is a relaxing two-level atom. The quantum bottleneck effect involves a counterintuitive decrease of the probability of photon escape from the cavity with the increase of its escape intensity. Numerical simulations of the process were carried out using the basic Lindblad quantum equation for the Jaynes-Cummings model with thermal relaxation. A quasi-classical description of the bottleneck mechanism is presented, similar to the Zeno effect. The counterintuitive behavior described plays an important role in the description of the exchange of single photons in nanosystems and in molecular complexes converting solar energy in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Martin-Delgado, On Quantum Effects in a Theory of Biological Evolution, Scientific Reports, Vol. 2, Article Number 302 (2012); doi: 10.1038/srep00302.

  2. V. Ogryzko and Y. Ozhigov, “Biologically inspired path to quantum computer,” in: Proceedings of SPIE, Vol. 9440, 9440C1–9440C10 (2014).

  3. R. E. Fenna and B. W. Matthews, “Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola,” Nature,258 (5536), 573–577; Bibcode: 1975 Natur.258.573F; doi: 10.1038/258573a0.

  4. M. Plenio et al., “Dephasing assisted transport: Quantum networks and biomolecules,” New J. Phys.,10, 113019 (2008).

    Article  Google Scholar 

  5. S. Huelga and M. Plenio, “Vibration, quanta and biology,” Contemp. Phys.,54, 181–207 (2013)

    Article  Google Scholar 

  6. C. T. Rodgers and P. J. Hore, “Chemical magnetoreception in birds: the radical pair mechanism,” Proc. Nat. Acad. Sci. United States of America,106, No. 2, 353–60 (2009).

    Article  Google Scholar 

  7. R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, “Cryptochrome mediates light-dependent magnetosensitivity in Drosophila,” Nature,454(7207), 1014–1018 (August 2008).

    Article  Google Scholar 

  8. E. Wajnberg, D. Acosta-Avalos, O. C. Alves, J. F. de Oliveira, R. B. Srygley, and D. Esquivel, “Magnetoreception in eusocial insects: an update,” J. Royal Society Interface,7 (Suppl 2), S207–S225 (2010).

    Google Scholar 

  9. H. G. Hiscock, S. Worster, D. R. Kattnig, C. Steers, Y. Jin, D. E. Manolopoulos, H. Mouritsen, and P. J. Hore, “The quantum needle of the avian magnetic compass,” in: Proc. Natl. Acad. Sci. USA. Apr 26;113(17) (2016), p. 4634-9; doi: 10.1073/pnas.1600341113.Epub 2016 Apr 4.

  10. Yu. I. Ozhigov and N. A. Skovoroda, “Conductivity of atomic excitations in a system of optical cavities,” Matem. Modelirovanie,29, No. 12, 123–134.

  11. A. V. Kulagin, V. Y. Ladunov, Y. I. Ozhigov, N. A. Skovoroda, and N. B. Victorova , “Homogeneous atomic ensembles and single-mode field: review of simulation results,” in: Proc. of SPIE,11022, 110222C1–110222C12 (2019).

  12. A. Tomadin and R. Fazio, “Many-body phenomena in QED-cavity arrays,” J. Opt. Soc. Am. B,27, A130 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Victorova.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 62, 2019, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victorova, N.B., Kulagin, A.V. & Ozhigov, Y.I. Quasi-Classical Description of the “Quantum Bottleneck” Effect for Thermal Relaxation of an Atom in a Resonator. Comput Math Model 31, 1–7 (2020). https://doi.org/10.1007/s10598-020-09470-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-020-09470-2

Keywords

Navigation