Skip to main content
Log in

Compact Stars with Modified Gauss–Bonnet Tolman–Oppenheimer–Volkoff Equation

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study compact stars for f(\(\mathcal{G}\)) gravity model using modified Tolman–Oppenheimer–Volkoff equation. Firstly, the hydrostatic equilibrium equations have been developed in the context of f(\(\mathcal{G}\)) gravity. Secondly, the profiles of energy density, pressure and mass of stars are investigated through two different equations of state models, p = ωρ5/3 and p = a(ρ – 4b), ρ being the energy density, ω, a and b are the specific constants. For f(\(\mathcal{G}\)) = α\({{\mathcal{G}}^{2}}\) model with α being an arbitrary constant, the physical attributes of the compact objects have been discussed for the different values of model parameter α. It is concluded that in the framework of f(\(\mathcal{G}\)) gravity, neutron and strange stars follow physically accepted patterns and the results agree with those already available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. M. Garnavich et al., Astrophys. J. 509, 74 (1998).

    Article  ADS  Google Scholar 

  2. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  3. E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  4. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  5. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).

    Article  ADS  Google Scholar 

  6. H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).

    Article  ADS  Google Scholar 

  7. S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

    Article  Google Scholar 

  8. S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Nojiri and S. D. Odintsov, Phys. Lett. B 1, 631 (2005).

    Google Scholar 

  11. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 73, 084007 (2006).

    Article  ADS  Google Scholar 

  12. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 75, 086002 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Nojiri and S. D. Odintsov, J. Phys.: Conf. Ser. 66, 012005 (2007).

    Google Scholar 

  14. A. D. Felice and S. Tsujikawa, Phys. Rev. D 80, 063516 (2009).

    Article  ADS  Google Scholar 

  15. S. Y. Zhou, E. J. Copeland, and P. M. Saffin, J. Cosmol. Astropart. Phys. 07, 009 (2009).

  16. M. Sharif and H. I. Fatima, Int. J. Mod. Phys. D 25, 1650011 (2016).

    Article  ADS  Google Scholar 

  17. R. C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 169 (1934).

    Article  ADS  Google Scholar 

  18. R. C. Tolman, Phys. Rev. 55, 364 (1939).

    Article  ADS  Google Scholar 

  19. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  Google Scholar 

  20. D. Momeni and R. Myrzakulov, Int. J. Geom. Meth. Mod. Phys. 12, 1550014 (2015).

    Article  Google Scholar 

  21. G. H. Bordbar and M. Modarres, Phys. Rev. C 57, 714 (1998).

    Article  ADS  Google Scholar 

  22. M. Visser and N. Yunes, Int. J. Mod. Phys. A 18, 3433 (2003).

    Article  ADS  Google Scholar 

  23. R. R. Silbar and S. Reddy, Am. J. Phys. 72, 892 (2004).

    Article  ADS  Google Scholar 

  24. G. Narain, J. Schaffner-Bielich, and I. N. Mishustin, Phys. Rev. D 74, 063003 (2006).

    Article  ADS  Google Scholar 

  25. G. H. Bordbar, M. Bigdeli, and T. Yazdizadeh, Int. J. Mod. Phys. A 21, 5991 (2006).

    Article  ADS  Google Scholar 

  26. P. Boonserm, M. Visser, and S. Weinfurtner, Phys. Rev. D 76, 044024 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  27. X. Li, F. Wang, and K. S. Cheng, J. Cosmol. Astropart. Phys. 10, 031 (2012).

  28. A. M. Oliveira, H. E. S. Velten, J. C. Fabris, and I. G. Salako, Eur. Phys. J. C 74, 3170 (2014).

    Article  ADS  Google Scholar 

  29. X. T. He, F. J. Fattoyev, B. A. Li, and W. G. Newton, Phys. Rev. C 91, 015810 (2015).

    Article  ADS  Google Scholar 

  30. P. H. R. S. Moraes, J. D. V. Arbail, and M. Malheiro, J. Cosmol. Astropart. Phys. 06, 005 (2016).

  31. A. V. Astashenok, S. D. Odintsov, and A. de la Cruz-Dombriz, Class. Quantum Grav. 34, 205008 (2017).

    Article  ADS  Google Scholar 

  32. G. A. Carvalho et al., Eur. Phys. J. C 77, 871 (2017).

    Article  ADS  Google Scholar 

  33. M. Sharif and A. Siddiqa, Eur. Phys. J. Plus 132, 529 (2017).

    Article  Google Scholar 

  34. A. V. Astashenok, S. Capozziello, and S. D. Odintsov, J. Cosmol. Astropart. Phys. 01, 001 (2015).

  35. A. V. Astashenok, S. Capozziello, and S. D. Odintsov, Phys. Lett. B 742, 160 (2015).

    Article  ADS  Google Scholar 

  36. D. Momeni, P. H. R. S. Moraes, H. Gholizade, and R. Myrzakulov, Int. J. Geom. Meth. Mod. Phys 15, 1850091 (2018).

    Article  Google Scholar 

  37. D. Momeni, H. Gholizade, M. Raza, and R. Myrzakulov, Int. J. Mod. Phys. A 30, 1550093 (2015).

    Article  ADS  Google Scholar 

  38. S. Capozziello, M. de Laurentis, R. Farinelli, and S. D. Odintsov, Phys. Rev. D 93, 023501 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Brax, A. C. Davis, and R. Jha, Phys. Rev. D 95, 083514 (2017).

    Article  ADS  Google Scholar 

  40. H. Mansour, B. S. Lakhal, and A. Yanallah, J. Cosmol. Astropart. Phys. 06, 006 (2018).

  41. S. Capozziello, M. de Laurentis, I. de Martino, M. Formisano, and S. D. Odintsov, Phys. Rev. D 85, 044022 (2012).

    Article  ADS  Google Scholar 

  42. C. Deliduman, K. Y. Eki, and V. Kele, J. Cosmol. Astropart. Phys. 05, 036 (2012).

  43. A. V. Astashenok, S. Capozziello, and S. D. Odintsov, Astrophys. Space Sci. 355, 333 (2015).

    Article  ADS  Google Scholar 

  44. A. V. Astashenok, S. Capozziello, and S. D. Odintsov, Phys. Rev. D 89, 103509 (2014).

    Article  ADS  Google Scholar 

  45. A. V. Astashenok, S. Capozziello, and S. D. Odintsov, J. Cosmol. Astropart. Phys. 12, 040 (2013).

  46. M. Ilyas, Eur. Phys. J. C 78, 757 (2018).

    Article  ADS  Google Scholar 

  47. S. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  48. J. M. Lattimer and M. Prakash, Science (Washington, DC, U. S.) 304, 536 (2004).

    Article  ADS  Google Scholar 

  49. R. F. Tooper, Astrophys. J. 140, 434 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Ray, A. L. Espndola, M. Malheiro, J. P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 68, 084004 (2003).

    Article  ADS  Google Scholar 

  51. J. D. V. Arbail, J. P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013).

    Article  ADS  Google Scholar 

  52. E. Witten, Phys. Rev. D 30, 272 (1984).

    Article  ADS  Google Scholar 

  53. N. Stergioulas, Living Rev. Relat. 6, 3 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  54. J. D. V. Arbail and M. Malheiro, Phys. Rev. D 92, 084009 (2015).

    Article  ADS  Google Scholar 

  55. R. P. Negreiros, F. Weber, M. Malheiro, and V. Usov, Phys. Rev. D 80, 083006 (2009).

    Article  ADS  Google Scholar 

  56. M. F. Shamir and M. Ahmad, Mod. Phys. Lett. A (in press); arXiv:1807.09103.

Download references

ACKNOWLEDGMENTS

Many thanks to the anonymous reviewer for valuable suggestions to improve the paper.

Funding

This work was supported by National University of Computer and Emerging Sciences (NUCES), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Shamir or T. Naz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamir, M.F., Naz, T. Compact Stars with Modified Gauss–Bonnet Tolman–Oppenheimer–Volkoff Equation. J. Exp. Theor. Phys. 128, 871–877 (2019). https://doi.org/10.1134/S1063776119050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119050054

Navigation