Skip to main content
Log in

Phenomenological Extension for Tidal Charge Black Hole

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A simple phenomenological extension of the black hole solution with tidal charge is proposed. Empirical data on the Sgr A* black hole is consistent with the suggested metric which serves as a generalization of the Reissner–Nordström one. Such a generalization includes the leading effects beyond general relativity; so, the discussed metric can explain wider range of gravitational effects. We discuss physical features of an object described by the proposed metric, namely, the size of its shadow and the innermost stable circular orbit radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. M. Will, Living Rev. Rel. 17, 4 (2014); arXiv:1403.7377. https://doi.org/10.12942/lrr-2014-4

  2. B. P. Abbott et al., Phys. Rev. Lett. 116, 221101 (2016); arXiv:1602.03841. https://doi.org/10.1103/PhysRevLett.116.221101

  3. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  Google Scholar 

  4. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006); arXiv:astro-ph/0608407. https://doi.org/10.1086/508162

    Article  ADS  Google Scholar 

  5. P. A. R. Ade et al. (Planck 2015 Results), Astron. Astrophys. 594, A13 (2016); arXiv:1502.01589. https://doi.org/10.1051/0004-6361/201525830

  6. S. Capozziello and M. de Laurentis, Phys. Rep. 509, 167 (2011); arXiv:1108.6266. https://doi.org/10.1016/j.physrep.2011.09.003

    Article  ADS  MathSciNet  Google Scholar 

  7. E. Berti et al., Class. Quantum. Grav. 32, 243001 (2015); arXiv:1501.07274. https://doi.org/10.1088/0264-9381/32/24/243001

  8. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010); arXiv:0805.1726. https://doi.org/10.1103/RevModPhys.82.451

    Article  ADS  Google Scholar 

  9. A. de Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010); arXiv:1002.4928. https://doi.org/10.12942/lrr-2010-3

  10. C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin, Phys. Rev. Lett. 108, 051101 (2012); arXiv:1106.2000. https://doi.org/10.1103/PhysRevLett.108.051101

    Article  ADS  Google Scholar 

  11. P. I. Dyadina, N. A. Avdeev, and S. O. Alexeyev, arXiv:1811.05393. https://doi.org/10.1093/mnras/sty3094

  12. A. F. Zakharov, Phys. Rev. D 90, 062007 (2014); arXiv:1407.7457. https://doi.org/10.1103/PhysRevD.90.062007

    Article  ADS  Google Scholar 

  13. A. Y. Bin-Nun, Phys. Rev. D 81, 123011 (2010); arXiv:0912.2081. https://doi.org/10.1103/PhysRevD.81.123011

    Article  ADS  Google Scholar 

  14. A. Y. Bin-Nun, Phys. Rev. D 82, 064009 (2010); arXiv:1004.0379. https://doi.org/10.1103/PhysRevD.82.064009

    Article  ADS  Google Scholar 

  15. A. Y. Bin-Nun, Class. Quant. Grav. 28, 114003 (2011); arXiv:1011.5848. https://doi.org/10.1088/0264-9381/28/11/114003

  16. N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania, Phys. Lett. B 487, 1 (2000); arXiv:hep-th/0003061. https://doi.org/10.1016/S0370-2693(00)00798-X

    Article  ADS  MathSciNet  Google Scholar 

  17. S. O. Alexeyev, A. N. Petrov, and B. N. Latosh, Phys. Rev. D 92, 104046 (2015); arXiv:1503.06780. https://doi.org/10.1103/PhysRevD.92.104046

  18. V. L. Fish et al., Astrophys. J. 727, L36 (2011); arXiv:1011.2472. https://doi.org/10.1088/2041-8205/727/2/L36

    Article  ADS  Google Scholar 

  19. A. F. Zakharov, Eur. Phys. J. C78, 689 (2018); arXiv:1804.10374. https://doi.org/10.1140/epjc/s10052-018-6166-5

  20. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, UK, 1992).

    MATH  Google Scholar 

  21. D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 83, 024021 (2011); arXiv:1012.5411. https://doi.org/10.1103/PhysRevD.83.024021

    Article  ADS  Google Scholar 

  22. V. Perlick, O. Yu. Tsupko, and G. S. Bisnovatyi-Kogan, Phys. Rev. D 92, 104031 (2015); arXiv:1507.04217. https://doi.org/10.1103/PhysRevD.92.104031

  23. V. Perlick and O. Yu. Tsupko, Phys. Rev. D 95, 104003 (2017); arXiv:1702.08768. https://doi.org/10.1103/PhysRevD.95.104003

Download references

6. FUNDING

The work was supported by Russian Foundation for Basic Research grant no. 16-02-00682 and by the program for development of the Moscow State University “MSU Leading Scientific Schools (physics of stars, relativistic compact objects, and galaxies).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. O. Alexeyev or V. A. Prokopov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeyev, S.O., Latosh, B.N., Prokopov, V.A. et al. Phenomenological Extension for Tidal Charge Black Hole. J. Exp. Theor. Phys. 128, 720–726 (2019). https://doi.org/10.1134/S1063776119040010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119040010

Navigation