Skip to main content
Log in

Study of background processes with the formation of neutrons in nuclear reactions in the energy range of 26–32 kev

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nature of background processes accompanying astrophysical nuclear reactions induced by hydrogen, helium, and neon ions in deuterated targets with small cross sections has been studied in calculations and experiments. The experiments have been performed at a Hall pulsed plasma accelerator in the ion energy range of 26–32 keV. The yield of background neutrons and γ-quanta with energies below 4 MeV in the proton-induced D(p, γ)3He reaction is primarily due to the presence of a natural impurity of gaseous deuterium in gaseous hydrogen and the chain of D(D, 3He)n → (n, γ) or (n, n'γ) reactions. A small contribution comes from the chain of D(1H, 1H)D → D(D, 3He)n → (n, γ) or (n, n'γ) reactions. It has been shown that background neutrons and γ-quanta from the D(4He, γ)6Li reaction are entirely due to the chain of D(4He, 4He)D → D(D, 3He)n → (n, γ) or (n, n'γ) reactions. It has been shown that the yield of neutrons and γ-ray photons detected at the interaction of neon ions with deuterated targets is also entirely due to the chain of elastic- scattering reactions of neon ions on deuterons in the target and to subsequent inelastic processes of interaction of deuterons accelerated at elastic scattering with other deuterons of the target. The main contribution to the yields of background neutrons and γ-quanta comes from doubly charged neon ions. The main conclusion is that the explanation of the yield of neutrons and γ-quanta at the interaction of hydrogen, helium, and neon ions with deuterated targets does not require “exotic” theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Schramm and R. V. Wagoner, Ann. Rev. Nucl. Sci. 27, 37 (1977).

    Article  ADS  Google Scholar 

  2. H. Reeves, Rev. Mod. Phys. 66, 193 (1994).

    Article  ADS  Google Scholar 

  3. B. D. Fields, Ann. Rev. Nucl. Part. Sci. 61, 47 (2011).

    Article  ADS  Google Scholar 

  4. R. H. Cyburt, B. D. Fields, K. A. Olive, and Tsun-Han Yeh, Rev. Mod. Phys. 88, 015004 (2016).

    Article  ADS  Google Scholar 

  5. M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and V. V. Smith, Astrophys. J. 644, 229 (2006).

    Article  ADS  Google Scholar 

  6. J. C. Howk, N. Lehner, B. D. Fields, and G. J. Mathews, Nature 489, 121 (2012).

    Article  ADS  Google Scholar 

  7. K. Lind, J. Melendez, M. Asplund, R. Collet, and Z. Magic, Astron. Astrophys. A 96, 554 (2013).

    Google Scholar 

  8. R. N. Boyd, C. R. Brune, G. M. Fuller, and C. J. Smith, Phys. Rev. D 82, 105005 (2010); arXiv:1008.0848 [astro-ph.CO].

    Article  ADS  Google Scholar 

  9. H. Dapo, I. Boztosun, G. Kocak, and A. B. Balantekin, Phys. Rev. C 85, 044602 (2012).

    Article  ADS  Google Scholar 

  10. L. Marcucci, K. Nollet, R. Schiavilla, and R. Wiringa, Nucl. Phys. A 777, 111 (2006).

    Article  ADS  Google Scholar 

  11. J. Kiener, H. J. Gils, H. Rebel, S. Zagromski, G. Gsottschneider, N. Heide, H. Jelitto, J. Wentz, and G. Baur, Phys. Rev. C 44, 2195 (1991).

    Article  ADS  Google Scholar 

  12. F. Hammache, M. Heil, S. Typel, et al., Phys. Rev. C 82, 065803 (2010).

    Article  ADS  Google Scholar 

  13. F. E. Cecil, J. Yan, and C. S. Galovich, Phys. Rev. C 53, 1967 (1996).

    Article  ADS  Google Scholar 

  14. M. Anders et al. (LUNA Collab.), Phys. Rev. Lett. 113, 042501 (2014).

    Article  ADS  Google Scholar 

  15. A. M. Mukhamedzhanov, L. D. Blokhintsev, and B. F. Irgaziev, Phys. Rev. C 83, 055805 (2011).

    Article  ADS  Google Scholar 

  16. Yu. B. Burkatovskaya, V. M. Bystritskii, G. N. Dudkin, A. R. Krylov, A. S. Lysakov, S. Gazi, I. Guran, B. A. Nechaev, V. N. Padalko, A. B. Sadovskii, Yu. G. Tuleushev, M. Filipovich, and A. V. Filippov, Phys. Part. Nucl. Lett. 13, 190 (2016).

    Article  Google Scholar 

  17. V. M. Bystritsky, G. N. Dudkin, A. R. Krylov, S. Gazi, J. Huran, B. A. Nechaev, V. N. Padalko, A. B. Sadovsky, Yu. Zh. Tuleushev, M. Filipowicz, and A. V. Philippov, Nucl. Instrum. Methods Phys. Res. A 825, 24 (2016).

    Article  ADS  Google Scholar 

  18. M. Anders, D. Trezzi, A. Bellini, et al. (LUNA Collab.), Eur. Phys. J. A 49, 28 (2013).

    Article  ADS  Google Scholar 

  19. A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res. B 354, 308 (2015).

    Article  ADS  Google Scholar 

  20. V. I. Vysotskii and M. V. Vysotsky, J. Exp. Theor. Phys. 120, 246 (2015).

    Article  ADS  Google Scholar 

  21. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, et al., Nucl. Phys. A 889, 93 (2012).

    Article  ADS  Google Scholar 

  22. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, et al., JETP Lett. 99, 497 (2014).

    Article  ADS  Google Scholar 

  23. A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, A. S. Rusetskii, A. P. Chubenko, V. G. Ralchenko, and A. P. Bolshakov, Nucl. Instrum. Methods Phys. Res. B 355, 340 (2015).

    Article  ADS  Google Scholar 

  24. A. V. Bagulya, O. D. Dal’karov, M. A. Negodaev, A. S. Rusetskii, A. P. Chubenko, and A. L. Shchepetov, Bull. Lebedev Phys. Inst. 40, 282 (2013).

    Article  ADS  Google Scholar 

  25. A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, A. S. Rusetskii, and A. P. Chubenko, Phys. Scripta 90, 074051 (2015).

    Article  ADS  Google Scholar 

  26. E. E. Salpeter, Phys. Rev. 88, 547 (1952).

    Article  ADS  Google Scholar 

  27. H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).

    Article  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1973; Pergamon Press, New York, 1988).

    Google Scholar 

  29. V. M. Bystritsky and F. M. Pen’kov, Phys. At. Nucl. 66, 77 (2003).

    Google Scholar 

  30. H. J. Assenbaum, K. Langanke, and C. Rolfs, Z. Phys. A 327, 461 (1987).

    ADS  Google Scholar 

  31. C. E. Moore, Ionization Potentials and Ionization Limits Derived From the Analysis of Optical Spectra, NSRDS–NBS 34 (Washington, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bystritsky.

Additional information

Original Russian Text © V.M. Bystritsky, V.A. Varlachev, G.N. Dudkin, A.S. Nurkin, B.A. Nechaev, V.N. Padalko, F.M. Pen’kov, Yu.Zh. Tuleushev, M. Filipowicz, A.V. Philippov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 877–889.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystritsky, V.M., Varlachev, V.A., Dudkin, G.N. et al. Study of background processes with the formation of neutrons in nuclear reactions in the energy range of 26–32 kev. J. Exp. Theor. Phys. 125, 741–751 (2017). https://doi.org/10.1134/S1063776117100041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117100041

Navigation