Skip to main content
Log in

Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structural and magnetic properties of the mesoporous systems based on silicon dioxide with a regular hexagonal arrangement of pores several microns in length and several nanometers in diameter, which are filled with iron compound nanofilaments in various chemical states, are studied in detail. The studies are performed using the following mutually complementary methods: transmission electron microscopy, SQUID magnetometry, electron spin resonance, Mössbauer spectroscopy, polarized neutron small-angle diffraction, and synchrotron radiation diffraction. It is shown that the iron nanoparticles in pores are mainly in the γ phase of Fe2O3 with a small addition of the α phase and atomic iron clusters. The effective magnetic field acting on a nanofilament from other nanofilaments is 11 mT and has a dipole nature, the ferromagnetic–paramagnetic transition temperature is in the range 76–94 K depending on the annealing temperature of the samples, and the temperature that corresponds to the change in the magnetic state of the iron oxide nanofilaments is T ≈ 50–60 K at H = 0 and T ≈ 80 K at H = 300 mT. It is also shown that the magnetization reversal of an array of nanofilaments is caused by the magnetostatic interaction between nanofilaments at the fields that are lower than the saturation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Menon and B. K. Gupta, Nanostruct. Mater. 11, 965 (1999).

    Article  Google Scholar 

  2. L. Thomas, F. Lionty, R. Ballou, et al., Nature 383, 145 (1996).

    Article  ADS  Google Scholar 

  3. J. S. Beck, J. C. Vartuli, W. J. Roth, et al., J. Am. Chem. Soc. 114, 10834 (1992).

    Article  Google Scholar 

  4. G. De, L. Tapfer, M. Catalano, et al., Appl. Phys. Lett. 68, 3820 (1996).

    Article  ADS  Google Scholar 

  5. K. S. Napolsky, A. A. Eliseev, A. V. Knotko, et al., Mater. Sci. Eng. C 23, 151 (2003).

    Article  Google Scholar 

  6. J. Cheon, K.-B. Lee, H. Kang, et al., in Proceedings of the MRS Symposium on Anisotropic Nanoparticles: Synthesis, Characterization and Applications, Boston, MA, 2000, p. 635.

    Google Scholar 

  7. R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).

    Article  Google Scholar 

  8. R. Zboril, M. Mashlan, D. Krausova, et al., Hyperfine Interact. 120–121, 497 (1999).

    Article  Google Scholar 

  9. R. Skomskii and J. M. D. Coey, Permanent Magnetism (Inst. Phys., Bristol, UK, 1999).

    Google Scholar 

  10. R. D. Zusler, M. Vasquez-Mansilla, C. Arciprete, et al., J. Magn. Magn. Mater. 224, 39 (2001).

    Article  ADS  Google Scholar 

  11. C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev. B 83, 333 (1951).

    Article  ADS  Google Scholar 

  12. C. Guilland, J. Phys. Radium. 12, 489 (1951).

    Article  Google Scholar 

  13. N. Amin and S. Arajs, Phys. Rev. B 35, 4810 (1987).

    Article  ADS  Google Scholar 

  14. A. B. Bourlinos, A. Simopoulos, and D. Petridis, Chem. Mater. 14, 899 (2002).

    Article  Google Scholar 

  15. G. Ennas, A. Musinu, G. Piccaluga, et al., Chem. Mater. 10, 495 (1998).

    Article  Google Scholar 

  16. C. Cannas, M. F. Casula, G. Concas, et al., J. Mater. Chem. 11, 3180 (2001).

    Article  Google Scholar 

  17. http://www.esrf.eu/computing/scientific/FIT2D/.

  18. http://www.cdifx.univ-rennes1.fr/winplotr/.

  19. C. P. Jaroniec, R. K. Gilpin, and M. Jaroniec, J. Phys. Chem. B 101, 6861 (1997).

    Article  Google Scholar 

  20. R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  21. C. T. Hseih, W. L. Huang, and J. T. Lue, J. Phys. Chem. Solidi 63, 733 (2002).

    Article  ADS  Google Scholar 

  22. R. D. Shull, J. J. Ritter, and L. J. Swartzendruber, J. Appl. Phys. 69, 5144 (1991).

    Article  ADS  Google Scholar 

  23. B. Bleaney and K. W. H. Stevens, Rep. Progr. Phys. 16, 108 (1953).

    Article  ADS  Google Scholar 

  24. B. Bleaney, London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 328 (1951).

    Article  Google Scholar 

  25. A. Abraham and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1973).

    Google Scholar 

  26. S. R. Kurkjian and E. A. Sigety, Phys. Chem. Glass. 9, 73 (1968).

    Google Scholar 

  27. V. V. Pan’kov, M. I. Ivanovskaya, and D. A. Kotikov, in Chemical Problems of Creation of New Materials and Technologies, Ed. by O. A. Ivashkevich (Belorus. Gos. Univ., Minsk, 2008), No. 3, p. 39 [in Russian].

    Google Scholar 

  28. H. K. Lachowicz, A. Sienkiewicz, P. Gierlowski, et al., J. Appl. Phys. 88, 368 (2000).

    Article  ADS  Google Scholar 

  29. R. Zysler, D. Fiorani, J.-L. Dormann, et al., J. Magn. Magn. Mater. 133, 71 (1994).

    Article  ADS  Google Scholar 

  30. M. M. Ibrahim, G. Edwards, M. S. Seehra, et al., J. Appl. Phys. 75, 5873 (1994).

    Article  ADS  Google Scholar 

  31. F. Gazeau, J.-C. Bacri, F. Gendron, et al., J. Magn. Magn. Mater. 186, 175 (1998).

    Article  ADS  Google Scholar 

  32. K. Parekh, R. V. Upadhyay, R. V. Mehta, et al., J. Appl. Phys. 88, 2799 (2000).

    Article  ADS  Google Scholar 

  33. L. Néel, J. Phys. Radium 15, 224 (1954).

    Google Scholar 

  34. B. Martinez, X. Obradors, L. Balcells, et al., Phys. Rev. Lett. 80, 181 (1998).

    Article  ADS  Google Scholar 

  35. M. Respaud, J. M. Broto, H. Racoto, et al., Phys. Rev. B 57, 2925 (1998).

    Article  ADS  Google Scholar 

  36. F. Preisach, Z. Phys. 94, 277 (1935).

    Article  ADS  Google Scholar 

  37. T. Song and R. M. Roshko, IEEE Trans. Magn. 36, 223 (2000).

    Article  ADS  Google Scholar 

  38. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. A 240, 599 (1948).

    Article  ADS  Google Scholar 

  39. S. V. Grigoriev, A. V. Syromyatnikov, A. P. Chumakov, et al., Phys. Rev. B 81, 125405 (2010).

    Article  ADS  Google Scholar 

  40. N. A. Grigorieva, S. V. Grigoriev, A. I. Okorokov, et al., Phys. E: Low-Dim. Syst. Nanostruct. 28, 286 (2005).

    Article  ADS  Google Scholar 

  41. S. V. Grigoriev, N. A. Grigor’eva, K. C. Napol’skii, A. P. Chumakov, A. A. Eliseev, I. V. Roslyakov, H. Eckerlebe, and A. V. Syromyatnikov, JETP Lett. 94, 635 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grigor’eva.

Additional information

Original Russian Text © N.A. Grigor’eva, H. Eckerlebe, A.A. Eliseev, A.V. Lukashin, K.S. Napol’skii, M. Kraje, S.V. Grigor’ev, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 3, pp. 558–577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’eva, N.A., Eckerlebe, H., Eliseev, A.A. et al. Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix. J. Exp. Theor. Phys. 124, 476–492 (2017). https://doi.org/10.1134/S106377611702011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611702011X

Navigation