Skip to main content
Log in

Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculated when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Butolin, V. G. Chermenskii, and T. O. Khasaev, RF Patent No. 2451433, Request No. 2011119241 (2011).

    Google Scholar 

  2. V. Ya. Averchenkov, L. P. Babich, T. V. Loiko, et al., Tech. Phys. 40, 493 (1995).

    Google Scholar 

  3. M. I. Lomaev, V. B. Nechaev, A. N. Padalko, G.N.Dudkin, D. A. Sorokin, V. F. Tarasenko, and E. N. Shuvalov, Tech. Phys. 60, 628 (2015).

    Article  Google Scholar 

  4. A. E. Shikanov, E. D. Vovchenko, K. I. Kozlovskii, and V. L. Shatokhin, Tech. Phys. 60, 48 (2015).

    Article  Google Scholar 

  5. E. P. Bogolyubov and V. I. Ryzhkov, Prib. Tekh. Eksp., No. 2, 160 (2004).

    Google Scholar 

  6. A. V. Agafonov, A. V. Bagulya, O. D. Dalkarov, et al., Phys. Rev. Lett. 111, 115003 (2013).

    Article  ADS  Google Scholar 

  7. D. L. Chichester, M. Lemchak, and J. D. Simpson, Nucl. Instrum. Methods Phys. Res. B 241, 753 (2005).

    Article  ADS  Google Scholar 

  8. V. S. Vasin, V. A. Tukarev, T. O. Khasaev, et al., in Proceedings of the Scientific Session of Moscow Eng. Phys. Inst. (Moscow, 2005), Vol. 5.

    Google Scholar 

  9. A. V. Filippov, M. N. Vasil’ev, A. V. Gavrikov, A. F. Pal’, O. F. Petrov, A. N. Starostin, and V. E. Fortov, JETP Lett. 86, 14 (2007).

    Article  ADS  Google Scholar 

  10. A. V. Filippov, A. F. Pal’, A. N. Starostin, et al., Phys. Plasmas 16, 093702 (2009).

    Article  ADS  Google Scholar 

  11. M. N. Vasil’ev, N. A. Vorona, A. V. Gavrikov, O. F. Petrov, V. S. Sidorov, and V. E. Fortov, Tech. Phys. Lett. 36, 1143 (2010).

    Article  ADS  Google Scholar 

  12. V. E. Fortov, A. V. Gavrikov, O. F. Petrov et al., Europhys. Lett. 94, 55001 (2011).

    Article  ADS  Google Scholar 

  13. M. V. Gorokhov, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, Tech. Phys. Lett. 42, 305 (2016).

    Article  ADS  Google Scholar 

  14. Yu. S. Akishev, V. B. Karal’nik, A. V. Petryakov, A. N. Starostin, N. I. Trushkin and A. V. Filippov, Plasma Phys. Rep. 42, 17 (2016).

    Article  ADS  Google Scholar 

  15. Yu. S. Akishev, A. P. Napartovich, V. V. Ponomarenko, et al., Sov. Tech. Phys. 30, 388 (1985).

    Google Scholar 

  16. Yu. S. Akishev, V. Yu. Baranov, A. M. Volchek, et al., Sov. Tech. Phys. 32, 778 (1987).

    Google Scholar 

  17. K. A. Klimenko and Yu. D. Korolev, Sov. Tech. Phys. 35, 1084 (1992).

    Google Scholar 

  18. Yu. S. Akishev, G. I. Aponin, A. A. Balakirev, et al., J. Phys. D: Appl. Phys. 46, 464014 (2013).

    Article  ADS  Google Scholar 

  19. V. Yu. Kozhevnikov, A. V. Kozyrev, and Yu. D. Korolev, Plasma Phys. Rep. 32, 949 (2006).

    Article  ADS  Google Scholar 

  20. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).

    Google Scholar 

  21. A. R. Shul’man and S. A. Fridrikhov, Secondary Emission Methods in the Study of Solid State (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. A. Shin, J. Yater, C. Hor, et al., Appl. Surf. Sci. 111, 251 (1997).

    Article  ADS  Google Scholar 

  23. C. Angulo, M. Arnould, M. Rayet, et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  Google Scholar 

  24. H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).

    Article  ADS  Google Scholar 

  25. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, et al., Nucl. Phys. A 889, 93 (2012).

    Article  ADS  Google Scholar 

  26. A. Huke, K. Czerski, P. Heide, et al., Phys. Rev. C 78, 015803 (2008).

    Article  ADS  Google Scholar 

  27. S. P. Moller, A. Csete, T. Ichioka, et al., Phys. Rev. Lett. 93, 042502 (2004).

    Article  ADS  Google Scholar 

  28. J. F. Ziegler, The Stopping and Range of Ions in Matter. http://www.srim.org/SRIM/SRIMPICS/STOPPLOTS.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Akishev.

Additional information

Original Russian Text © Yu.S. Akishev, V.B. Karal’nik, A.V. Petryakov, A.N. Starostin, N.I. Trushkin, A.V. Filippov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 2, pp. 270–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akishev, Y.S., Karal’nik, V.B., Petryakov, A.V. et al. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles. J. Exp. Theor. Phys. 124, 231–243 (2017). https://doi.org/10.1134/S1063776117010101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117010101

Navigation