Skip to main content
Log in

Positive column of a glow discharge in neon with charged dust grains (a review)

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).

    Article  ADS  Google Scholar 

  2. S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  3. K. Ostrikov, U. Cvelbar, and A. B. J. Murphy, Phys. D 44, 174001 (2011).

    Article  ADS  Google Scholar 

  4. L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, and D. N. Polyakov, High Temp. 38, 675 (2000).

    Article  Google Scholar 

  5. V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, JETP 92, 86 (2001).

    Article  ADS  Google Scholar 

  6. L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, JETP 94, 521 (2002).

    Article  ADS  Google Scholar 

  7. L. M. Vasilyak, S. P. Vetchinin, V. S. Zimnukhov, D. N. Polyakov, and V. E. Fortov, JETP 96, 436 (2003).

    Article  ADS  Google Scholar 

  8. H. Kersten, G. Thieme, D. Bojic, D. H. Tung, M. Quaas, H. Wulff, and R. Hippler, Appl. Pure Chem. 77, 415 (2005).

    Article  Google Scholar 

  9. L. M. Vasilyak, M. N. Vasiliev, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, Tech. Phys. Lett. 31, 827 (2005).

    Article  Google Scholar 

  10. M. Mikikian, L. Couedel, M. Cavarroc, Y. Tessier, and L. Boufendi, Eur. Phys. J. Appl. Phys. 49, 13106 (2010).

    Article  ADS  Google Scholar 

  11. L. Boufendi, M. Ch. Jouanny, E. Kovacevic, J. Berndt, and M. Mikikian, J. Phys. D 44, 174035 (2011).

    Article  ADS  Google Scholar 

  12. D. N. Polyakov, L. M. Vasilyak, and V. V. Shumova, Surf. Eng. Appl. Elect. 51, 143 (2015).

    Article  Google Scholar 

  13. D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Surf. Eng. Appl. Elect. 49, 114 (2013).

    Article  Google Scholar 

  14. I. Goertz, F. Greiner, and A. Piel, Phys. Plasmas 18, 013703 (2011).

    Article  ADS  Google Scholar 

  15. L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, JETP 100, 1029 (2005).

    Article  ADS  Google Scholar 

  16. D. N. Polyakov, L. M. Vasilyak, V. V. Shumova, and V. E. Fortov, Phys. Lett. A 375, 3300 (2011).

    Article  ADS  Google Scholar 

  17. L. M. Vasilyak, D. N. Polyakov, and V. V. Shumova, Contrib. Plasma Phys. 53, 432 (2013).

    Article  ADS  Google Scholar 

  18. Q. A. Abbas, J. Applicat. Innov. Eng. Manag. 2, 470 (2013).

    Google Scholar 

  19. L. M. Vasilyak, D. N. Polyakov, V. E. Fortov, and V. V. Shumova, High. Temp. 49, 623 (2011).

    Article  Google Scholar 

  20. D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Rom. Rep. Phys. 67, 1040 (2015).

    Google Scholar 

  21. D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, IEEE Trans. Plasma Sci. 42, 2684 (2014).

    Article  ADS  Google Scholar 

  22. Q. A. Abbas, and R. A. H. Edan, System Eng. Tech. J. 31 (5B), 633 (2013).

    Google Scholar 

  23. C. Arnas, A. Michau, G. Lombardi, L. Couëdel, and K. K. Kumar, Phys. Plasmas 20, 013705 (2013).

    Article  ADS  Google Scholar 

  24. K. K. Kumar, L. Couëdel, and C. Arnas, Phys. Plasmas 20, 043707 (2013).

    Article  ADS  Google Scholar 

  25. L. Boufendi, J. Gaudin, S. Huet, G. Viera, and M. Dudemaine, Appl. Phys. Lett. 79, 4301 (2001).

    Article  ADS  Google Scholar 

  26. G. Wattieaux and L. Boufendi, Phys. Plasmas 19, 033701 (2012).

    Article  ADS  Google Scholar 

  27. G. I. Sukhinin, A. V. Fedoseev, T. S. Ramazanov, R. Zh. Amangaliyeva, M. K. Dosbalayev, and A. N. Jumabekov, J. Phys. D 41, 245207 (2008).

    Article  ADS  Google Scholar 

  28. A. A. Pikalev and L. A. Luizova, Ukr. J. Phys. 59, 375 (2014).

    Article  Google Scholar 

  29. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. Conf. Series 653, 012132 (2015).

    Article  Google Scholar 

  30. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Tekhnol. 23, 065008 (2014).

    Article  ADS  Google Scholar 

  31. A. V. Fedoseev and G. I. Sukhinin, Ukr. J. Phys. 56, 1272 (2011).

    Google Scholar 

  32. G. I. Sukhinin, A. V. Fedoseev, S. N. Antipov, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 87, 013101 (2013).

    Article  ADS  Google Scholar 

  33. I. Denysenko, I. Stefanovic, B. Sikimic, J. Winter, N. A. Azarenkov, and N. Sadeghi, J. Phys. D 44, 205204 (2011).

    Article  ADS  Google Scholar 

  34. S. A. Orazbayev, M. N. Jumagulov, M. K. Dosbolayev, M. Silamiya, T. S. Ramasanov, and L. Boufendi, AIP Conf. Proc. 1397, 379 (2011).

    Article  ADS  Google Scholar 

  35. H. T. Do, H. Kersten, and R. Hippler, New J. Phys. 10, 053010 (2008).

    Article  ADS  Google Scholar 

  36. C. Killer, G. Bandelow, K. Matyash, R. Schneider, and A. Melzer, Phys. Plasmas 20, 083704 (2013).

    Article  ADS  Google Scholar 

  37. I. Stefanovic, N. J. Sadeghi, and J. Winter, J. Phys. D 43, 152003 (2010).

    Article  ADS  Google Scholar 

  38. A. Bouchoule and L. Boufendi, Plasma Sources Sci. Technol. 3, 292 (1994).

    Article  ADS  Google Scholar 

  39. B. Layden, V. Cheung, and A. Samarian, IEEE Trans. Plasma Sci. 39, 2762 (2011)

    Article  ADS  Google Scholar 

  40. S. Mitic, M. Y. Pustylnik, and G. E. Morfill, New J. Phys. 11, 083020 (2009).

    Article  ADS  Google Scholar 

  41. I. Denysenko, J. Berndt, E. Kovacevic, I. Stefanovic, V. Selenin, and J. Winter, Phys. Plasmas 13, 073507 (2006).

    Article  ADS  Google Scholar 

  42. A. Melzer, S. Hubner, L. Lewerentz, K. Matyash, R. Schneider, and R. Ikkurthi, Phys. Rev. E 83, 036411 (2011).

    Article  ADS  Google Scholar 

  43. H. T. Do, V. Sushkov, and R. Hippler, New J. Phys. 11, 033020 (2009).

    Article  Google Scholar 

  44. I. V. Schweigert and A. L. Alexandrov, J. Phys. D 45, 325201 (2012).

    Article  ADS  Google Scholar 

  45. A. Michau, G. Lombardi, L. C. Delacqua, M. Redolfi, C. Arnas, P. Jestin, X. Bonnin, and K. Hassouni, Plasma Chem. Plasma Process. 32, 451 (2012).

    Article  Google Scholar 

  46. H. Totsuji, Phys. Lett. A 380, 1442 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Totsuji, Plasma Phys. Controlled Fusion 58, 045010 (2016).

    Article  ADS  Google Scholar 

  48. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  49. L. L. Alves, K. Bartschat, S. F. Biagi, M. C. Bordage, L. C. Pitchford, C. M. Ferreira, G. J. M. Hagelaar, W. L. Morgan, S. Pancheshnyi, A. V. Phelps, V. Puech, and O. Zatsarinny, J. Phys. D 46, 334002 (2013).

    Article  Google Scholar 

  50. L. G. D’yachkov, A. G. Khrapak, S. A. Khrapak, and G. E. Morfill, Phys. Plasmas 14, 042102 (2007).

    Article  ADS  Google Scholar 

  51. T. Bindemann, M. Tichy, J. F. Behnke, H. Deutsch, and K. Becker, Rev. Sci. Instrum. 69, 2037 (1998).

    Article  ADS  Google Scholar 

  52. K. A. Barzilovich, N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, in Proceedings of the 2011 Conference on Physics of Low-Temperature Plasma, Petrozavodsk, 2011, p. 20.

    Google Scholar 

  53. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and K. A. Barzilovich, Plasma Phys. Rep. 36, 1040 (2010).

    Article  ADS  Google Scholar 

  54. M. A. Ermolenko, E. S. Dzlieva, V. Yu. Karasev, S. I. Pavlov, V. A. Polishchuk, and A. P. Gorbenko, Tech. Phys. Lett. 41, 1199 (2015).

    Article  ADS  Google Scholar 

  55. V. Yu. Karasev, V. A. Polishchyuk, A. P. Gorbenko, E. S. Dzlieva, M. A. Ermolenko, and M. M. Makar, Phys. Solid State 58, 1041 (2016).

    Article  ADS  Google Scholar 

  56. A. V. Semenov, A. D. Khakhaev, A. I. Shcherbina, and A. A. J. Velichko, Surf. Invest. X-Ray 6 (1), 137 (2012).

    Article  Google Scholar 

  57. A. V. Semenov, A. L. Pergament, A. I. Scherbina, and A. A. Pikalev, Prikl. Fiz., No. 2, 66 (2016).

    Google Scholar 

  58. D. N. Polyakov, V. V. Shumova, L. M. Vasilyak, and V. E. Fortov, Phys. Scr. 82, 055501 (2010).

    Article  ADS  Google Scholar 

  59. D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Dig. J. Nanomater. Bios. 9, 1249 (2014).

    Google Scholar 

  60. J. Kreher and W. Stern, Contrib. Plasma Phys. 29, 643 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Polyakov.

Additional information

Original Russian Text © D.N. Polyakov, V.V. Shumova, L.M. Vasilyak, 2017, published in Uspekhi Prikladnoi Fiziki, 2016, Vol. 4, No. 4, pp. 362–371.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, D.N., Shumova, V.V. & Vasilyak, L.M. Positive column of a glow discharge in neon with charged dust grains (a review). Plasma Phys. Rep. 43, 397–404 (2017). https://doi.org/10.1134/S1063780X17030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030096

Navigation