Skip to main content
Log in

The role of AlGaN buffers and channel thickness in the electronic transport properties of Al x In1–x N/AlN/GaN heterostructures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We try to theoretically analyze the reported experimental data of the Al x In1–x N/AlN/GaN heterostructures grown by MOCVD and quantitatively investigate the effects of AlGaN buffers and the GaNchannel thickness on the electrical transport properties of these systems. Also, we obtain the most important effective parameters of the temperature-dependent mobility in the range 35–300 K. Our results show that inserting a 1.1 μm thick Al0.04Ga0.96N buffer enhances electron mobility by decreasing the effect of phonons, the interface roughness, and dislocation and crystal defect scattering mechanisms. Also, as the channel thickness increases from 20 nm to 40 nm, the electron mobility increases from 2200 to 2540 cm2/(V s) and from 870 to 1000 cm2/(V s) at 35 and 300 K respectively, which is attributed to the reduction in the dislocation density and the strain-induced field. Finally, the reported experimental data show that inserting a 450 nm graded AlGaN layer before an Al0.04Ga0.96N buffer causes a decrease in the electron mobility, which is attributed to the enhancement of the lateral size of roughness, the dislocation density, and the strain-induced field in this sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoc, Handbook of Nitride Semiconductor and Devices (Wiley, Berlin, 2008). Vols. I–III.

    Book  Google Scholar 

  2. J. Kuzmik, IEEE Electron Device Lett. 22, 510 (2001).

    Article  ADS  Google Scholar 

  3. J. Kuzmik, Semicond. Sci. Technol. 17, 540 (2002).

    Article  ADS  Google Scholar 

  4. R. Tülek, A. Ilgaz, S. Gökden, A. Teke, M. K. Öztürk, M. Kasap, S. Özçelik, E. Arslan, and E. Özbay, J. Appl. Phys. 105 (1), 013707 (2009).

    Article  ADS  Google Scholar 

  5. A. Koukitu, Y. Kumagai, and H. Seki, Phys. Status Solidi A 180, 115 (2000).

    Article  ADS  Google Scholar 

  6. M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, N. Grandjean, Appl. Phys. Lett. 89, 062106 (2006).

    Article  ADS  Google Scholar 

  7. J. Xue, J. Zhang, W. Zhang, L. Li, F. Meng, M. Lu, J. Ning, and Y. Hao, J. Cryst. Growth 343, 110 (2012).

    Article  ADS  Google Scholar 

  8. O. Kelekci, P. Tasil, S. S. Cetin, M. Kasap, S. Ozcelik, and E. Ozbay, Curr. Appl. Phys. 12 (6), 1600 (2012).

    Article  ADS  Google Scholar 

  9. O. Katz, D. Mistele, B. Meyler, G. Bahir, and J. Salzman, IEEE Trans. Electron Devices 52, 146 (2005).

    Article  ADS  Google Scholar 

  10. M. T. L. Tansley, in Properties of Group III Nitrides, Ed. by J. H. Edgar, Electronic Materials Information Service (EMIS) Data Reviews Series (INSPEC, London, 1994). No. 11, pp. 35–40.

    Google Scholar 

  11. S. Gokden, Chin. J. Phys. 46, 145 (2008).

    Google Scholar 

  12. H. Harima, J. Phys.: Condens. Matter 14, R967 (2002).

    ADS  Google Scholar 

  13. A. Kasic, M. Schubert, Y. Saito, G. Wagner, and Y. Nanishi, Phys. Rev. B: Condens. Matter 65, 115206/1 (2002).

    Article  ADS  Google Scholar 

  14. M. Levinshtein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).

    Google Scholar 

  15. B. K. Ridley, J. Phys. C: Solid State Phys. 15, 5899 (1982).

    Article  ADS  Google Scholar 

  16. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, J. Appl. Phys. 54, 11 (1983).

    Google Scholar 

  17. P. K. Basu and B. R. Nag, Phys. Rev. B: Condens. Matter 22, 4849 (1980).

    Article  ADS  Google Scholar 

  18. P. J. Price, Ann. Phys. (New York) 133, 217 (1981).

    Article  ADS  Google Scholar 

  19. P. J. Price, J. Vac. Sci. Technol. 19, 599 (1981).

    Article  ADS  Google Scholar 

  20. K. Hess, Appl. Phys. Lett. 35, 484 (1979).

    Article  ADS  Google Scholar 

  21. C. T. Sah, T. H. Ning, and L. L. Tscopp, Surf. Sci. 32, 561 (1972).

    Article  ADS  Google Scholar 

  22. S. Das Sarma and F. Stern, Phys. Rev. B: Condens. Matter 32, 8442 (1985).

    Article  ADS  Google Scholar 

  23. J. H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  24. D. Zanato, S. Gokden, N. Balkan, and W. J. Schaff, Semicond. Sci. Technol. 19, 427 (2004).

    Article  ADS  Google Scholar 

  25. U. Panner, H. Rucker, and I. N. Yassievich, Semicond. Sci. Technol. 13, 709 (1998).

    Article  ADS  Google Scholar 

  26. B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B: Condens. Matter 61, 16862 (2000).

    Article  ADS  Google Scholar 

  27. M. J. Kearney and A. L. Horrel, Semicond. Sci. Technol. 13, 174 (1998).

    Article  ADS  Google Scholar 

  28. H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani, and H. Morkoc, Solid-State Electron. 42, 839 (1998).

    Article  ADS  Google Scholar 

  29. H. Morkoç and Ümit Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, New York, 2009).

    Book  Google Scholar 

  30. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  31. A. U. Sheleg and V. A. Savastenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 1598 (1979).

    Google Scholar 

  32. C. S. Gallinat, G. Koblmuller, F. Wu, and J. S. Speck, J. Appl. Phys. 107, 053517 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amirabbasi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirabbasi, M. The role of AlGaN buffers and channel thickness in the electronic transport properties of Al x In1–x N/AlN/GaN heterostructures. J. Exp. Theor. Phys. 122, 159–164 (2016). https://doi.org/10.1134/S1063776115130075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115130075

Keywords

Navigation