Skip to main content
Log in

Quantum renormalizations in anisotropic multisublattice magnets and the modification of magnetic susceptibility under irradiation

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dispersion equation of a strongly anisotropic one-dimensional magnet catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 containing alternating high-spin (HS) (S = 2) and low-spin (LS) (S = 1/2) iron ions is obtained by the diagram technique for Hubbard operators. The analysis of this equation yields six branches in the excitation spectrum of this magnet. It is important that the crystal field for ions with spin S = 2 is described by the Hamiltonian of single-ion easy-plane anisotropy, whose orientation is changed by 90° when passing from one HS iron ion to another. The U(N) transformation technique in the atomic representation is applied to diagonalize a single-ion Hamiltonian with a large number of levels. It is shown that the modulation of the orientation of easy magnetization planes leads to a model of a ferrimagnet with easy-axis anisotropy and to the formation of energy spectrum with a large gap. For HS iron ions, a decrease in the mean value of the spin projection due to quantum fluctuations is calculated. The analysis of the specific features of the spectrum of elementary excitations allows one to establish a correspondence to a generalized Ising model for which the magnetic susceptibility is calculated in a wide range of temperatures by the transfer-matrix method. The introduction of a statistical ensemble that takes into account the presence of chains of different lengths and the presence of iron ions with different spins allows one to describe the experimentally observed modification of the magnetic susceptibility of the magnet under optical irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Smirnov and V. N. Glazkov, J. Exp. Theor. Phys. 105 (4), 861 (2007).

    Article  ADS  Google Scholar 

  2. S.-L. Drechsler, O. Volkova, A. N. Vasiliev, N. Tristan, J. Richter, M. Schmitt, H. Rosner, J. Malek, R. Klingeler, A. A. Zvyagin, and B. Buchner, Phys. Rev. Lett. 98, 077202 (2007).

    Article  ADS  Google Scholar 

  3. L. E. Svistov, T. Fujita, H. Yamaguchi, S. Kimura, K. Omura, A. Prokofiev, A. I. Smirnov, Z. Honda, and M. Hagiwara, JETP Lett. 93 (1), 21 (2011).

    Article  ADS  Google Scholar 

  4. L. A. Prozorova, S. S. Sosin, L. E. Svistov, N. Buttgen, J. B. Kemper, A. P. Reyes, S. Riggs, A. Prokofiev, and O. A. Petrenko, Phys. Rev. B: Condens. Matter 91, 174410 (2015).

    Article  ADS  Google Scholar 

  5. L. Bogani, A. Vindigni, R. Sessoli, and D. Gatteschi, J. Mater. Chem. 18, 4750 (2008).

    Article  Google Scholar 

  6. C. Coulon, H. Miyasaka, and R. Cl’erac, Struct. Bonding (Berlin, Ger.) 122, 163 (2006).

    Article  Google Scholar 

  7. W.-X. Zhang, R. Ishikawa, B. Breedlove, and M. Yamashita, RSC Adv. 3, 3772 (2013).

    Article  Google Scholar 

  8. T. Liu, H. Zheng, S. Kang, Y. Shiota, S. Hayami, M. Mito, O. Sato, K. Yoshizawa, S. Kanegawa, and C. Duan, Nat. Commun. 4, 2826 (2013).

    ADS  Google Scholar 

  9. O. V. Billoni, V. Pianet, and D. A. Vindigni Pescia, Phys. Rev. B: Condens. Matter 84, 064415 (2011).

    Article  ADS  Google Scholar 

  10. R. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Bogani, A. Caneschi, M. Fedi, D. Gatteschi, M. Massi, M. A. Novak, M. G. Pini, A. Rettori, R. Sessoli, and A. Vindigni, Phys. Rev. Lett. 92, 207204 (2004).

    Article  ADS  Google Scholar 

  12. C. Coulon, R. Cl’erac, L. Lecren, W. Wernsdorfer, and H. Miyasaka, Phys. Rev. B: Condens. Matter 69, 132408 (2004).

    Article  ADS  Google Scholar 

  13. A. Vindigni, L. Bogani, D. Gatteschi, R. Sessoli, A. Rettori, and M. A. Novak, J. Magn. Magn. Mater. 272–276, 297 (2004).

    Article  Google Scholar 

  14. Yu. B. Kudasov, J. Exp. Theor. Phys. 110 (2), 360 (2010).

    Article  ADS  Google Scholar 

  15. M. G. Pini and A. Rettori, Phys. Rev. B: Condens. Matter 76, 064407 (2007).

    Article  ADS  Google Scholar 

  16. C. Coulon, R. Cl’erac, W. Wernsdorfer, T. Colin, A. Saitoh, N. Motokawa, and H. Miyasaka, Phys. Rev. B: Condens. Matter 76, 214422 (2007).

    Article  ADS  Google Scholar 

  17. A. Vindigni and M. G. Pini, J. Phys.: Condens. Matter 21, 236007 (2009).

    ADS  Google Scholar 

  18. K. Bernot, J. Luzon, A. Caneschi, D. Gatteschi, R. Sessoli, L. Bogani, A. Vindigni, A. Rettori, and M. G. Pini, Phys. Rev. B: Condens. Matter 79, 134419 (2009).

    Article  ADS  Google Scholar 

  19. S. Sahoo, J.-P. Sutter, and S. Ramasesha, J. Stat. Phys. 147, 181 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu. B. Kudasov, A. S. Korshunov, V. N. Pavlov, and D. A. Maslov, Phys.—Usp. 55 (12), 1169 (2012).

    Article  ADS  Google Scholar 

  21. M. Nihei, T. Shiga, Y. Maeda, and H. Oshio, Coord. Chem. Rev. 251, 2606 (2007).

    Article  Google Scholar 

  22. P. Gamez, J. S. Costa, M. Quesada, and G. Aromi, Dalton Trans. 38, 7845 (2009).

    Article  Google Scholar 

  23. B. Weber and E.-G. Ja’ger, Eur. J. Inorg. Chem. 4, 465 (2009).

    Article  Google Scholar 

  24. M. A. Halcrow, Chem. Soc. Rev. 40, 4119 (2011).

    Article  Google Scholar 

  25. T. Liu, Y.-J. Zhang, S. Kanegawa, and O. Sato, J. Am. Chem. Soc. 132, 8250 (2010).

    Article  Google Scholar 

  26. N. Hoshino, F. Iijima, G. N. Newton, N. Yoshida, T.Shiga, H. Nojiri, A. Nakao, R. Kumai, Y. Murakami, and H. Oshio, Nat. Chem. 4 (11), 921 (2012).

    Article  Google Scholar 

  27. M. Yamashita, T. Kajiwara, Yu. Kaneko, M. Nakano, Sh. Takaishi, T. Ito, H. Nojiri, N. Kojima, and M. Mito, Presentation at Sixth International Symposium on Crystalline Organic Metals, Superconductors, and Ferromagnets (2005).

    Google Scholar 

  28. E. Heintze, F. El Hallak, C. Clauß, A. Rettori, M. G. Pini, F. Totti, M. Dressel, and L. Bogani, Nat. Mater. 12, 202 (2013).

    Article  ADS  Google Scholar 

  29. T. Kajiwara, M. Nakano, Yu. Kaneko, Sh. Takaishi, T. Ito, M. Yamashita, A. Igashira-Kamiyama, H. Nojiri, Yu. Ono, and N. Kojima, J. Am. Chem. Soc. 127, 10150 (2005).

    Article  Google Scholar 

  30. T. Kajiwara, H. Tanaka, and M. Yamashita, Pure Appl. Chem. 80, 2297 (2008).

    Article  Google Scholar 

  31. T. Kajiwara, H. Tanaka, M. Nakano, Sh. Takaishi, Ya. Nakazawa, and M. Yamashita, Inorg. Chem. 49, 8358 (2010).

    Article  Google Scholar 

  32. R. O. Zaitsev, Sov. Phys. JETP 41 (1), 100 (1975).

    ADS  Google Scholar 

  33. V. V. Val’kov and T. A. Val’kova, Sov. J. Low Temp. Phys. 11 (9), 524 (1985).

    Google Scholar 

  34. V. V. Val’kov, T. A. Val’kova, and S. G. Ovchinnikov, Sov. Phys. JETP 61 (2), 323 (1985).

    Google Scholar 

  35. V. V. Val’kov and T. A. Val’kova, Teor. Mat. Fiz. 76 (1), 143 (1988).

    Google Scholar 

  36. V. I. Butrim, B. A. Ivanov, and Yu. A. Fridman, Low Temp. Phys. 38 (5), 395 (2012).

    Article  ADS  Google Scholar 

  37. R. O. Zaitsev, Diagrammatic Method in the Theory of Superconductivity and Ferromagnetism (URSS, Moscow, 2004; URSS, Moscow, 2008).

    Google Scholar 

  38. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in Strongly Correlated Systems (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  39. O. A. Kosmachev, Yu. A. Fridman, E. G. Galkina, and B. A. Ivanov, J. Exp. Theor. Phys. 120 (2), 281 (2015).

    Article  ADS  Google Scholar 

  40. E. G. Galkina, V. I. Butrim, Yu. A. Fridman, B. A. Ivanov, and F. Nori, Phys. Rev. B: Condens. Matter 88, 144420 (2013).

    Article  ADS  Google Scholar 

  41. V. V. Val’kov, V. A. Mitskan, and G. A. Petrakovskii, J. Exp. Theor. Phys. 102 (2), 234 (2006).

    Article  ADS  Google Scholar 

  42. V. V. Val’kov, S. V. Aksenov, and E. A. Ulanov, J. Exp. Theor. Phys. 119 (1), 124 (2014).

    Article  ADS  Google Scholar 

  43. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Mir, Moscow, 1985; Academic Press, London, 2008).

    MATH  Google Scholar 

  44. L. Bogani, A. Caneschi, M. Fedi, D. Gatteschi, M. Massi, M. A. Novak, M. G. Pini, A. Rettori, R. Sessoli, and A. Vindigni, Phys. Rev. Lett. 92 (20–21), 207204 (2004).

    Article  ADS  Google Scholar 

  45. F. A. Kassan-Ogly, Phase Transitions 722, 223 (2000).

    Article  Google Scholar 

  46. A. Vindigni, A. Rettori, M. G. Pini, C. Carbone, and P. Gambardella, Appl. Phys. A 82 (3), 385 (2006).

    Article  ADS  Google Scholar 

  47. K. Bernot, J. Luzon, A. Caneschi, D. Gatteschi, R. Sessoli, L. Bogani, A. Vindigni, A. Rettori, and M. G. Pini, Phys. Rev. B: Condens. Matter 79 (13), 134419 (2009).

    Article  ADS  Google Scholar 

  48. A. A. Lushnikov, Sov. Phys. JETP 29 (1), 120 (1968).

    ADS  Google Scholar 

  49. A. K. Arzhnikov and A. V. Vedyaev, Sov. J. Low Temp. Phys. 8, 600 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, M.S. Shustin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 984–1004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Shustin, M.S. Quantum renormalizations in anisotropic multisublattice magnets and the modification of magnetic susceptibility under irradiation. J. Exp. Theor. Phys. 121, 860–877 (2015). https://doi.org/10.1134/S1063776115110175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110175

Keywords

Navigation