Skip to main content
Log in

Interlayer coupling in Fe/Cr/Gd multilayer structures

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2015

Abstract

The effect of the chromium layer thickness on the magnetic state of an [Fe/Cr/Gd/Cr] n multilayer structure is studied. A series of Fe/Cr/Gd structures with Cr spacer thicknesses of 4–30 Å is studied by SQUID magnetometry and ferromagnetic resonance in the temperature range 4.2–300 K. The obtained experimental results are described in terms of an effective field model, which takes into account a biquadratic contribution to the interlayer coupling energy and a nonuniform magnetization distribution inside the gadolinium layer (which was detected earlier). Depending on the magnetic field and temperature, the following types of magnetic ordering are identified at various chromium layer thicknesses: ferromagnetic, antiferromagnetic, and canted ordering. A comparison of the experimental and calculated curves allowed us to determine the dependence of the bilinear (J 1) and biquadratic (J 2) exchange constants on chromium layer thickness t Cr. Weak oscillations at a period of about 18 Å are detected in the J 1(t Cr) dependence in the range 8–30 Å. The interlayer coupling oscillations in the system under study are assumed to be related to the RKKY exchange interaction mechanism via the conduction electrons of Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).

    Article  ADS  Google Scholar 

  2. J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).

    Article  ADS  Google Scholar 

  3. V. V. Ustinov, N. G. Bebenin, L. N. Romashev, V. I. Minin, M. A. Milyaev, A. R. Del, and A. V. Semerikov, Phys. Rev. B: Condens. Matter 52, 15958 (1996).

    Article  ADS  Google Scholar 

  4. A. B. Drovosekov, N. M. Kreines, D. I. Kholin, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, JETP Lett. 67(9), 727 (1998).

    Article  ADS  Google Scholar 

  5. C. M. Schmidt, D. E. Bürgler, D. M. Schaller, F. Meisinger, and H.-J. Güntherodt, Phys. Rev. B: Condens. Matter 60, 4158 (1999).

    Article  ADS  Google Scholar 

  6. D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999).

    Article  ADS  Google Scholar 

  7. S. O. Demokritov, A. B. Drovosekov, N. M. Kreines, H. Nembach, M. Rickart, and D. I. Kholin, J. Exp. Theor. Phys. 95(6), 1062 (2002).

    Article  ADS  Google Scholar 

  8. Ultrathin Magnetic Structures III, Ed. by J. A. C. Bland and B. Heinrich (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  9. V. N. Men’shov and V. V. Tugushev, J. Exp. Theor. Phys. 98(1), 123 (2004).

    Article  ADS  Google Scholar 

  10. R. E. Camley and R. L. Stamps, J. Phys: Condens. Matter 5, 3727 (1993).

    ADS  Google Scholar 

  11. D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader, Phys. Rev. Lett. 87, 207201 (2001).

    Article  ADS  Google Scholar 

  12. E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, Phys. Rev. B: Condens. Matter 79, 134438 (2009).

    Article  ADS  Google Scholar 

  13. E. A. Kravtsov and V. V. Ustinov, Phys. Solid State 52(11), 2259 (2010).

    Article  ADS  Google Scholar 

  14. K. Takanashi, H. Fujimori, and H. Kurokawa, J. Magn. Magn. Mater. 126, 242 (1993).

    Article  ADS  Google Scholar 

  15. K. Takanashi, H. Kurokawa, and H. Fujimori, Appl. Phys. Lett. 63, 1585 (1993).

    Article  ADS  Google Scholar 

  16. S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).

    Article  ADS  Google Scholar 

  17. R. Chai-Ngam, N. Sakai, A. Koizumi, H. Kobayashi, and T. Ishii, J. Phys. Soc. Jpn. 74, 1843 (2005).

    Article  ADS  Google Scholar 

  18. B. Sanyal, C. Antoniak, T. Burkert, B. Krumme, A. Warland, F. Stromberg, C. Praetorius, K. Fauth, H. Wende, and O. Eriksson, Phys. Rev. Lett. 104, 156402 (2010).

    Article  ADS  Google Scholar 

  19. M. V. Ryabukhina, E. A. Kravtsov, D. V. Blagodatkov, L. I. Naumova, V. V. Proglyado, V. V. Ustinov, and Yu. Khaydukov, J. Surf. Invest. 8(5), 983 (2014).

    Article  Google Scholar 

  20. C. Ward, G. Scheunert, W. R. Hendren, R. Hardeman, M. Gubbins, and R. Bowman, Appl. Phys. Lett. 102, 092403 (2013).

    Article  ADS  Google Scholar 

  21. G. Suciu, J. C. Toussaint, and J. Voiron, J. Magn. Magn. Mater. 240, 229 (2002).

    Article  ADS  Google Scholar 

  22. A. F. Kip, Rev. Mod. Phys. 25, 229 (1953).

    Article  ADS  Google Scholar 

  23. O. H. Horan and G. C. Alexandrakis, Phys. Rev. B: Solid State 16, 4180 (1977).

    Article  ADS  Google Scholar 

  24. S. Demirtas, I. Harward, R. E. Camley, Z. Celinski, M. R. Hossu, A. R. Koymen, C. Yu, and M. J. Pechan, arXiv:1002.4889.

  25. M. Sajieddine, Ph. Bauer, K. Cherifi, C. Dufour, G. Marchal, and R. E. Camley, Phys. Rev. B: Condens. Matter 49, 8815 (1994).

    Article  ADS  Google Scholar 

  26. N. Hosoito, H. Hashizume, and N. Ishimatsu, J. Phys.: Condens. Matter 14, 5289 (2002).

    ADS  Google Scholar 

  27. Y. Choi, D. Haskel, R. E. Camley, D. R. Lee, J. C. Lang, G. Srajer, J. S. Jiang, and S. D. Bader, Phys. Rev. B: Condens. Matter 70, 134420 (2004).

    Article  ADS  Google Scholar 

  28. M. Romera, M. Munoz, M. Maicas, J. M. Michalik, J. M. de Teresa, C. Magén, and J. L. Prieto, Phys. Rev. B: Condens. Matter 84, 094456 (2011).

    Article  ADS  Google Scholar 

  29. K. Mergia, L. T. Baczewski, S. Messoloras, S. Hamada, T. Shinjo, H. Gamari-Seale, and J. Hauschild, Appl. Phys. A: Mater. Sci. Process. 74(Suppl.), S1520 (2002).

    Article  ADS  Google Scholar 

  30. P. Bruno, J. Phys.: Condens. Matter 11, 9403 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Drovosekov.

Additional information

Original Russian Text © A.B. Drovosekov, N.M. Kreines, A.O. Savitsky, E.A. Kravtsov, D.V. Blagodatkov, M.V. Ryabukhina, M.A. Milyaev, V.V. Ustinov, E.M. Pashaev, I.A. Subbotin, G.V. Prutskov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 6, pp. 1204–1219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drovosekov, A.B., Kreines, N.M., Savitsky, A.O. et al. Interlayer coupling in Fe/Cr/Gd multilayer structures. J. Exp. Theor. Phys. 120, 1041–1054 (2015). https://doi.org/10.1134/S1063776115060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115060059

Keywords

Navigation