Skip to main content
Log in

Flux tube spectra from approximate integrability at low energies

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Contribution for the JETP special issue in honor of V.A.Rubakov’s 60th birthday

Abstract

We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Veneziano, Nuovo Cimento A 57, 190 (1968).

    Article  ADS  Google Scholar 

  2. F. Bissey, F.-G. Cao, A. Kitson, A. I. Signal, D. B. Leinweber, B. G. Lasscock, and A. G. Williams, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 76, 114512 (2007). arXiv:hep-lat/0606016.

    Article  Google Scholar 

  3. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200.

    ADS  MATH  MathSciNet  Google Scholar 

  4. A. M. Polyakov, Int. J. Mod. Phys. A 14, 645 (1999). arXiv:hep-th/9809057.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. A. Athenodorou, B. Bringoltz, and M. Teper, J. High Energy Phys. 1102, 030 (2011). arXiv:1007.4720.

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Athenodorou, B. Bringoltz, and M. Teper, J. High Energy Phys. 1105, 042 (2011). arXiv:1103.5854.

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Athenodorou and M. Teper, J. High Energy Phys. 1306, 053 (2013). arXiv:1303.5946.

    Article  ADS  Google Scholar 

  8. M. Lüscher, Nucl. Phys. B 180, 317 (1981).

    Article  ADS  Google Scholar 

  9. M. Lüscher and P. Weisz, J. High Energy Phys. 0407, 014 (2004). arXiv:hep-th/0406205.

    Article  Google Scholar 

  10. O. Aharony and N. Klinghoffer, J. High Energy Phys. 1012, 058 (2010). arXiv:1008.2648.

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Goddard, J. Goldstone, C. Rebbi, and C. B. Thorn, Nucl. Phys. B 56, 109 (1973).

    Article  ADS  Google Scholar 

  12. J. Arvis, Phys. Lett. B 127, 106 (1983).

    Article  ADS  Google Scholar 

  13. S. Dubovsky, R. Flauger, and V. Gorbenko, Phys. Rev. Lett. 111, 062006 (2013). arXiv:1301.2325.

    Article  ADS  Google Scholar 

  14. O. Aharony and Z. Komargodski, J. High Energy Phys. 1305, 118 (2013). arXiv:1302.6257.

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Dubovsky, R. Flauger, and V. Gorbenko, J. High Energy Phys. 1209, 044 (2012). arXiv:1203.1054.

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Zamolodchikov, Nucl. Phys. B 342, 695 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Dorey and R. Tateo, Nucl. Phys. B 482, 639 (1996). arXiv:hep-th/9607167.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. M. Lüscher, Comm. Math. Phys. 104, 177 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Lüscher, Comm. Math. Phys. 105, 153 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Lucini and M. Panero, Phys. Rep. 526, 93 (2013). arXiv:1210.4997.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. L. Mezincescu and P. K. Townsend, Phys. Rev. Lett. 105, 191601 (2010). arXiv:1008.2334.

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Dubovsky, R. Flauger, and V. Gorbenko, J. High Energy Phys. 1209, 133 (2012). arXiv:1205.6805.

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Polchinski and A. Strominger, Phys. Rev. Lett. 67, 1681 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. O. Aharony, M. Field, and N. Klinghoffer, J. High Energy Phys. 1204, 048 (2012). arXiv:1111.5757.

    Article  ADS  MathSciNet  Google Scholar 

  25. M. T. Hansen and S. R. Sharpe, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 016007 (2012). arXiv:1204.0826.

    Article  Google Scholar 

  26. M. T. Hansen and S. R. Sharpe, arXiv:1311.4848.

  27. J. Teschner, Nucl. Phys. B 799, 403 (2008). arXiv:hepth/0702214.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. R. A. Janik, Lett. Math. Phys. 99, 277 (2012). arXiv:1012.3994.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. P. Cooper, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 88, 025047 (2013). arXiv:1303.0743.

    Article  Google Scholar 

  30. A. M. Polyakov, Nucl. Phys. B 268, 406 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Mazur and V. Nair, Nucl. Phys. B 284, 146 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  32. D. Karabali and V. Nair, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 025014 (2008). arXiv: 0705.2898.

    Article  Google Scholar 

  33. M. Caselle, D. Fioravanti, F. Gliozzi, and R. Tateo, J. High Energy Phys. 1307, 071 (2013). arXiv:1305.1278.

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Hellerman and I. Swanson, arXiv:1312.0999.

  35. K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003). arXiv:hep-lat/0207004.

    Article  ADS  Google Scholar 

  36. O. Andreev, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 065013 (2012). arXiv:1207.1892.

    Article  Google Scholar 

  37. S. Dubovsky, R. Flauger, and V. Gorbenko, arXiv: 1404.0037v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dubovsky.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovsky, S., Flauger, R. & Gorbenko, V. Flux tube spectra from approximate integrability at low energies. J. Exp. Theor. Phys. 120, 399–422 (2015). https://doi.org/10.1134/S1063776115030188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115030188

Keywords

Navigation