Skip to main content
Log in

Closed flux tubes in higher representations and their string description in D=2+1 SU(N) gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate, numerically, the low-lying spectrum of closed confining flux tubes that carry flux in different representations of SU(N). We do so for SU(6) at β = 171, where the calculated low-energy physics is very close to the continuum limit and, in many respects, also close to N = ∞. We focus on the adjoint, 84, 120, k = 2A, 2S and k = 3A,3M,3S representations and provide evidence that the corresponding flux tubes, albeit mostly unstable, do in fact exist. We observe that the ground state of a flux tube with momentum along its axis appears to be well defined in all cases and is well described by the Nambu-Goto spectrum (in flat space-time), all the way down to very small lengths, just as it is for flux tubes carrying fundamental flux. Excited states, however, typically show very much larger deviations from Nambu-Goto than the corresponding excitations of fundamental flux tubes and, indeed, cannot be extracted in many cases. We discuss whether what we are seeing here are separate stringy and massive modes or simply large corrections to energy levels that will become string-like at larger lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the Free Loop Wave Equation in the WKB Approximation, Nucl. Phys. B 173 (1980) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Lüscher, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, Nucl. Phys. B 180 (1981) 317 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Monin and M. Voloshin, Spontaneous and Induced Decay of Metastable Strings and Domain Walls, Annals Phys. 325 (2010) 16 [arXiv:0904.1728] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Monin and M. Voloshin, Destruction of a metastable string by particle collisions, Phys. Atom. Nucl. 73 (2010) 703 [arXiv:0902.0407] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Monin and M. Voloshin, Breaking of a metastable string at finite temperature, Phys. Rev. D 78 (2008) 125029 [arXiv:0809.5286] [INSPIRE].

    ADS  Google Scholar 

  8. A. Monin and M. Voloshin, The spontaneous breaking of a metastable string, Phys. Rev. D 78 (2008) 065048 [arXiv:0808.1693] [INSPIRE].

    ADS  Google Scholar 

  9. M. Shifman and A. Yung, Metastable strings in Abelian Higgs models embedded in nonAbelian theories: Calculating the decay rate, Phys. Rev. D 66 (2002) 045012 [hep-th/0205025] [INSPIRE].

    ADS  Google Scholar 

  10. A. Armoni and M. Shifman, Remarks on stable and quasistable k strings at large-N, Nucl. Phys. B 671 (2003) 67 [hep-th/0307020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Bolognesi, M. Shifman and M. Voloshin, Quantum Fusion of Strings (Flux Tubes) and Domain Walls, Phys. Rev. D 80 (2009) 045010 [arXiv:0905.1664] [INSPIRE].

    ADS  Google Scholar 

  12. A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=2+1 SU(N) gauge theories, JHEP 05 (2011) 042[arXiv:1103.5854] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Athenodorou, B. Bringoltz and M. Teper, On the spectrum of closed k = 2 flux tubes in D=2+1 SU(N) gauge theories, JHEP 05 (2009) 019[arXiv:0812.0334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Bringoltz and M. Teper, Closed k-strings in SU(N) gauge theories : 2+1 dimensions, Phys. Lett. B 663 (2008) 429 [arXiv:0802.1490] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. J. Arvis, The Exact Q \( \overline{q} \) Potential In Nambu String Theory, Phys. Lett. B 127 (1983) 106 [INSPIRE].

    ADS  Google Scholar 

  16. M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].

    Article  Google Scholar 

  17. J. Drummond, Universal subleading spectrum of effective string theory, hep-th/0411017 [INSPIRE].

  18. O. Aharony, M. Field and N. Klinghoffer, The effective string spectrum in the orthogonal gauge, JHEP 04 (2012) 048 [arXiv:1111.5757] [INSPIRE]

    Article  MathSciNet  ADS  Google Scholar 

  19. O. Aharony and M. Dodelson, Effective String Theory and Nonlinear Lorentz Invariance, JHEP 02 (2012) 008 [arXiv:1111.5758] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065 [arXiv:1008.2636] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. F. Gliozzi and M. Meineri, Lorentz completion of effective string (and p-brane) action, JHEP 08 (2012) 056 [arXiv:1207.2912] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Billó, M. Caselle, F. Gliozzi, M. Meineri and R. Pellegrini, The Lorentz-invariant boundary action of the confining string and its universal contribution to the inter-quark potential, JHEP 05 (2012) 130 [arXiv:1202.1984] [INSPIRE].

    Article  ADS  Google Scholar 

  25. H.B. Meyer, Poincaré invariance in effective string theories, JHEP 05 (2006) 066 [hep-th/0602281] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Dubovsky, R. Flauger and V. Gorbenko, Evidence for a new particle on the worldsheet of the QCD flux tube, arXiv:1301.2325 [INSPIRE].

  27. S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Lucini and M. Teper, Confining strings in SU(N) gauge theories, Phys. Rev. D 64 (2001) 105019 [hep-lat/0107007] [INSPIRE].

    ADS  Google Scholar 

  30. B. Lucini and M. Teper, The k = 2 string tension in four dimensional SU(N) gauge theories, Phys. Lett. B 501 (2001) 128 [hep-lat/0012025] [INSPIRE].

    ADS  Google Scholar 

  31. L. Del Debbio, H. Panagopoulos, P. Rossi and E. Vicari, K string tensions in SU(N) gauge theories, Phys. Rev. D 65 (2002) 021501 [hep-th/0106185] [INSPIRE].

    ADS  Google Scholar 

  32. B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Karabali, C.-j. Kim and V. Nair, On the vacuum wave function and string tension of Yang-Mills theories in (2+1)-dimensions, Phys. Lett. B 434 (1998) 103 [hep-th/9804132] [INSPIRE].

    ADS  Google Scholar 

  34. D. Karabali, V. Nair and A. Yelnikov, The Hamiltonian Approach to Yang-Mills (2+1): An Expansion Scheme and Corrections to String Tension, Nucl. Phys. B 824 (2010) 387 [arXiv:0906.0783] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Deldar, Static SU(3) potentials for sources in various representations, Phys. Rev. D 62 (2000) 034509 [hep-lat/9911008] [INSPIRE].

    ADS  Google Scholar 

  36. S. Deldar, Potentials between static SU(3) sources in the fat center vortices model, JHEP 01 (2001) 013 [hep-ph/9912428] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Deldar, A new lattice measurement for potentials between static SU(3) sources, Eur. Phys. J. C 47 (2006) 163 [hep-lat/0607025] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G.S. Bali, Casimir scaling of SU(3) static potentials, Phys. Rev. D 62 (2000) 114503 [hep-lat/0006022] [INSPIRE].

    ADS  Google Scholar 

  39. S. Kratochvila and P. de Forcrand, Observing string breaking with Wilson loops, Nucl. Phys. B 671 (2003) 103 [hep-lat/0306011] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Pepe and U.-J. Wiese, From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory, Phys. Rev. Lett. 102 (2009) 191601 [arXiv:0901.2510] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Athenodorou and M. Teper, in progress.

  42. H. Meyer and M. Teper, Confinement and the effective string theory in SU(N → ∞): A Lattice study, JHEP 12 (2004) 031 [hep-lat/0411039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Teper, An Improved Method for Lattice Glueball Calculations, Phys. Lett. B 183 (1987) 345 [INSPIRE].

    ADS  Google Scholar 

  44. B. Lucini and M. Teper, SU(N) gauge theories in (2+1)-dimensions: Further results, Phys. Rev. D 66 (2002) 097502 [hep-lat/0206027] [INSPIRE].

    ADS  Google Scholar 

  45. M.J. Teper, SU(N) gauge theories in (2+1)-dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [INSPIRE].

    ADS  Google Scholar 

  46. C. Itzykson and M. Nauenberg, Unitary Groups: Representation And Decompositions, Rev. Mod. Phys. 38 (1966) 95 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Teper.

Additional information

ArXiv ePrint: 1303.5946

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athenodorou, A., Teper, M. Closed flux tubes in higher representations and their string description in D=2+1 SU(N) gauge theories. J. High Energ. Phys. 2013, 53 (2013). https://doi.org/10.1007/JHEP06(2013)053

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)053

Keywords

Navigation