Skip to main content
Log in

One loop tests of higher spin AdS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Vasiliev’s type A higher spin theories in AdS4 have been conjectured to be dual to the U(N) or O(N) singlet sectors in 3-d conformal field theories with N-component scalar fields. We compare the \( \mathcal{O} \)(N 0) correction to the 3-sphere free energy F in the CFTs with corresponding calculations in the higher spin theories. This requires evaluating a regularized sum over one loop vacuum energies of an infinite set of massless higher spin gauge fields in Euclidean AdS4. For the Vasiliev theory including fields of all integer spin and a scalar with Δ = 1 boundary condition, we show that the regularized sum vanishes. This is in perfect agreement with the vanishing of subleading corrections to F in the U(N) singlet sector of the theory of N free complex scalar fields. For the minimal Vasiliev theory including fields of only even spin, the regularized sum remarkably equals the value of F for one free real scalar field. This result may agree with the O(N) singlet sector of the theory of N real scalar fields, provided the coupling constant in the Vasiliev theory is identified as G N ~ 1/(N − 1). Similarly, consideration of the USp(N) singlet sector for N complex scalar fields, which we conjecture to be dual to the husp(2; 0|4) Vasiliev theory, requires G N ~ 1/(N + 1). We also test the higher spin AdS3 /CFT2 conjectures by calculating the regularized sum over one loop vacuum energies of higher spin fields in AdS3. We match the esult with the \( \mathcal{O} \)(N 0) term in the central charge of the W N minimal models; this requires a certain truncation of the CFT operator spectrum so that the bulk theory contains two real scalar fields with the same boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  7. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. R.G. Leigh and A.C. Petkou, Holography of the \( \mathcal{N} \) = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].

    ADS  Google Scholar 

  15. J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. Colombo and P. Sundell, Higher spin gravity amplitudes from zero-form charges, arXiv:1208.3880 [INSPIRE].

  18. V. Didenko and E. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, arXiv:1210.7963 [INSPIRE].

  19. O. Gelfond and M. Vasiliev, Operator algebra of free conformal currents via twistors, Nucl. Phys. B 876 (2013) 871 [arXiv:1301.3123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. Didenko, J. Mei and E. Skvortsov, Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev theory, Phys. Rev. D 88 (2013) 046011 [arXiv:1301.4166] [INSPIRE].

    ADS  Google Scholar 

  21. O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  23. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. N. Boulanger and P. Sundell, An action principle for Vasilievs four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. N. Boulanger, N. Colombo and P. Sundell, A minimal BV action for Vasilievs four-dimensional higher spin gravity, JHEP 10 (2012) 043 [arXiv:1205.3339] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Doroud and L. Smolin, An action for higher spin gauge theory in four dimensions, arXiv:1102.3297 [INSPIRE].

  29. M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. S.S. Gubser and I. Mitra, Double trace operators and one loop vacuum energy in AdS/CFT, Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Sinha and C. Vafa, SO and Sp Chern-Simons at large N, hep-th/0012136 [INSPIRE].

  36. S. Banerjee, S. Hellerman, J. Maltz and S.H. Shenker, Light states in Chern-Simons theory coupled to fundamental matter, JHEP 03 (2013) 097 [arXiv:1207.4195] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Aganagic, D. Jafferis, S. Hellerman and C. Vafa, work in progress.

  38. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-Matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. G. Gur-Ari and R. Yacoby, Correlators of large-N fermionic Chern-Simons vector models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A. Niemi and G. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  44. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. G. Gibbons, S.W. Hawking and M. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Gibbons and M. Perry, Quantizing gravitational instantons, Nucl. Phys. B 146 (1978) 90 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Christensen and M. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. O. Yasuda, On the one loop effective potential in quantum gravity, Phys. Lett. B 137 (1984) 52 [INSPIRE].

    Article  ADS  Google Scholar 

  52. M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. M.R. Gaberdiel, D. Grumiller and D. Vassilevich, Graviton 1-loop partition function for 3-dimensional massive gravity, JHEP 11 (2010) 094 [arXiv:1007.5189] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. R.K. Gupta and S. Lal, Partition functions for higher-spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. S.W. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys. 55 (1977) 133 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. R. Camporesi and A. Higuchi, Arbitrary spin effective potentials in anti-de Sitter space-time, Phys. Rev. D 47 (1993) 3339 [INSPIRE].

    ADS  Google Scholar 

  57. R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. F. Bastianelli and R. Bonezzi, One-loop quantum gravity from a worldline viewpoint, JHEP 07 (2013) 016 [arXiv:1304.7135] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Effective action for higher spin fields on (A)dS backgrounds, JHEP 12 (2012) 113 [arXiv:1210.4649] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. R.G. Leigh and A.C. Petkou, Singleton deformation of higher-spin theory and the phase structure of the three-dimensional O(N) vector model, arXiv:1212.4421 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Giombi.

Additional information

ArXiv ePrint: 1308.2337

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giombi, S., Klebanov, I.R. One loop tests of higher spin AdS/CFT. J. High Energ. Phys. 2013, 68 (2013). https://doi.org/10.1007/JHEP12(2013)068

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)068

Keywords

Navigation