Skip to main content
Log in

Optical defect modes at an active defect layer in photonic liquid crystals

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytic approach to the theory of the optical defect modes in photonic liquid crystals in the case of an active defect layer is developed. The analytic study is facilitated by the choice of the problem parameters related to the dielectric properties of the studied structures. The chosen models allow eliminating polarization mixing at the external surfaces of the studied structures. The dispersion equations determining the relation of the defect mode (DM) frequency to the dielectric characteristics of an isotropic, birefringent and absorbing (amplifying) defect layer and its thickness are obtained. Analytic expressions for the transmission and reflection coefficients of the defect mode structure (DMS) (photonic liquid crystal-active defect layer-photonic liquid crystal) are presented and analyzed. The effect of anomalously strong light absorption at the defect mode frequency for an absorbing defect layer is discussed. It is shown that in a distributed feed-back lasing at the DMS with an amplifying defect layer, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold and the threshold gain decreases as the defect layer thickness increases. It is found that, generally speaking, the layer birefringence and dielectric jumps at the interfaces of the defect layer and photonic liquid crystal reduce the DM lifetime in comparison with the DMS with an isotropic defect layer without dielectric jumps at the interfaces. Correspondingly, generally speaking, the effect of anomalously strong light absorption at the defect mode frequency and the decrease in the lasing threshold are not so pronounced as in the case of the DMS with an isotropic defect layer without dielectric jumps at the interfaces. The case of a DMS with a low defect layer birefringence and sufficiently large dielectric jumps are studied in detail. The options of effectively influencing the DM parameters by changing the defect layer dielectric properties, and the birefringence in particular, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 6852 (1999).

    Article  Google Scholar 

  2. V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2003).

    Article  ADS  Google Scholar 

  3. J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).

    Article  ADS  Google Scholar 

  4. P. V. Shibaev, V. I. Kopp, and A. Z. Genack, J. Phys. Chem. B 107, 6961 (2003).

    Article  Google Scholar 

  5. M. A. Matranga, M. P. DeSanto, G. Petriashvili, A. Chanishvili, G. Chilaya, and R. Barbery, Ferroelectrics 395, 1 (2010).

    Article  Google Scholar 

  6. H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, Thin Solid Films 516, 2358 (2008).

    Article  ADS  Google Scholar 

  7. Y. Takanishi, Y. Ohtsuka, G. Suzaki, S. Nashimura, and H. Takezoe, Opt. Express 18, 12909 (2010).

    Article  ADS  Google Scholar 

  8. A. V. Shabanov, S. Ya. Vetrov, and A. Yu. Karneev, JETP Lett. 80(3), 181 (2004)].

    Article  ADS  Google Scholar 

  9. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27(6), 369 (2003).

    Article  ADS  Google Scholar 

  10. M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, Phys. Rev. B: Condens. Matter 70, 033103 (2004).

    Article  ADS  Google Scholar 

  11. J. Schmidtke and W. Stille, Eur. Phys. J. 90, 353 (2003).

    Google Scholar 

  12. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 494, 127 (2008).

    Article  Google Scholar 

  13. V. A. Belyakov and S. V. Semenov, J. Exp. Theor. Phys. 112(4), 694 (2011).

    Article  ADS  Google Scholar 

  14. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 559, 39 (2012).

    Article  Google Scholar 

  15. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 559, 50 (2012).

    Article  Google Scholar 

  16. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).

    Article  ADS  Google Scholar 

  17. V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, V. F. Shabanov, and Wei Lee, J. Exp. Theor. Phys. 112(4), 577 (2011).

    Article  ADS  Google Scholar 

  18. I. J. Hodkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and W. McCall, Opt. Commun. 184, 57 (2000).

    Article  ADS  Google Scholar 

  19. F. Wang and A. Lakhtakia, Opt. Express 13, 7319 (2005).

    Article  ADS  Google Scholar 

  20. M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, Adv. Mater. (Weinheim) 18, 193 (2006).

    Article  Google Scholar 

  21. H. Yoshida, C. H. Lee, A. Fuji, and M. Ozaki, Appl. Phys. Lett. 89, 231913 (2006).

    Article  ADS  Google Scholar 

  22. H. Yoshida, R. Ozaki, K. Yoshino, and M. Ozaki, Thin Solid Films 509, 197 (2006).

    Article  ADS  Google Scholar 

  23. A. H. Gevorgyan and M. Z. Haratyunyan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 76, 031701 (2007).

    Article  ADS  Google Scholar 

  24. M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, Jpn. J. Appl. Phys. 44, 8165 (2005).

    Article  ADS  Google Scholar 

  25. V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sect. A 13, 54 (1989).

    Google Scholar 

  26. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer-Verlag, New York, 1992), Chap. 4.

    Book  Google Scholar 

  27. H. de Vries, Acta Crystallogr. 4, 219 (1951).

    Article  Google Scholar 

  28. E. I. Kats, Sov. Phys. JETP 33(3), 634 (1971).

    ADS  Google Scholar 

  29. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  30. V. A. Belyakov, A. A. Gevorgian, O. S. Eritsian, and N. V. Shipov, Sov. Phys. Tech. Phys. 32, 843 1987; V. A. Belyakov, A. A. Gevorgian, O. S. Eritsian, and N. V. Shipov, Sov. Phys. Crystalogr. 33, 337 (1988).

    Google Scholar 

  31. V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  32. V. A. Belyakov and S. V. Semenov, in Proceedings of the 24th International Liquid Crystal Conference, Mainz, Germany, August 19–24, 2012 p. 92, PIII-148.

  33. V. A. Belyakov and S. V. Semenov, J. Exp. Theor. Phys. 109(4), 687 (2009).

    Article  ADS  Google Scholar 

  34. V. A. Belyakov, in New Developments in Liquid Crystals and Applications, Ed. by P. K. Choundry (Nova Science, New York, 2013), Chap. 7, p. 199.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Belyakov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, V.A., Semenov, S.V. Optical defect modes at an active defect layer in photonic liquid crystals. J. Exp. Theor. Phys. 118, 798–813 (2014). https://doi.org/10.1134/S1063776114040013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114040013

Keywords

Navigation