Skip to main content
Log in

Separation of the Mechanisms of Photoinduced Deformations in Crystals Using Time-Resolved X-ray Diffractometry

  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A diversity of effects leading to deformation of illuminated crystals has been mentioned. A methodical approach to studying the processes of generation of photoinduced deformations in non-centrosymmetric crystals is proposed based on the application of time-resolved X-ray diffraction techniques. Using the experimental measurements with millisecond time resolution, supplemented by numerical calculations, the contributions of piezophotovoltaic and pyroelectric effects, thermal expansion, and optical rectification to the general picture of crystal deformation under illumination are separated. The key parameters of the described deformation contributions are determined for their effective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, et al., Usp. Fiz. Nauk 188 (12), 1288 (2018). https://doi.org/10.3367/UFNr.2018.01.038279

    Article  Google Scholar 

  2. H. Yan, Z. Feng, S. Shang, et al., Nat. Nanotechnol. 14, 131 (2019). https://doi.org/10.1038/s41565-018-0339-0

    Article  ADS  Google Scholar 

  3. N. Lei, T. Devolder, G. Agnus, et al., Nat. Commun. 4, 1378 (2013). https://doi.org/10.1038/ncomms2386

    Article  ADS  Google Scholar 

  4. M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, et al., Crystallogr. Rep. 59 (6), 862 (2014).

    Article  ADS  Google Scholar 

  5. D. Hunter, W. Osborn, K. Wang, et al., Nat. Commun. 2, 518 (2011). https://doi.org/10.1038/ncomms1529

    Article  ADS  Google Scholar 

  6. M. Lejman, G. Vaudel, I. C. Infante, et al., Nat. Commun. 5, 4301 (2014). https://doi.org/10.1038/ncomms5301

    Article  ADS  Google Scholar 

  7. S. G. Zhukov, G. V. Fetisov, and L. A. Aslanov, J. Appl. Crystallogr. 24, 74 (1991). https://doi.org/10.1107/S0021889890010160

    Article  Google Scholar 

  8. N. A. Abramov, V. V. Voronov, and Y. S. Kuzminov, Ferroelectrics 22, 649 (1978). https://doi.org/10.1080/00150197808237356

    Article  Google Scholar 

  9. M. Calamiotou, N. Chrysanthakopoulos, G. Papaioannou, et al., J. Appl. Phys. 102, 083527 (2007). https://doi.org/10.1063/1.2798636

  10. F. S. Pilyak, A. G. Kulikov, V. M. Fridkin, et al., Phys. B: Condens. Matter 604, 412706 (2021). https://doi.org/10.1016/j.physb.2020.412706

  11. Q. Meng, B. Zhang, S. Zhong, and L. Zhu, Appl. Phys. A 122, 582 (2016). https://doi.org/10.1007/s00339-016-0120-x

    Article  ADS  Google Scholar 

  12. M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  13. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Sci. Publ., Philadelphia, 1992).

    Google Scholar 

  14. Z. Gu, D. Imbrenda, A. L. Bennett-Jackson, et al., Phys. Rev. Lett. 118, 096601 (2017). https://doi.org/10.1103/PhysRevLett.118.096601

  15. A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974). https://doi.org/10.1063/1.1655453

    Article  ADS  Google Scholar 

  16. R. Gerson, J. F. Kirchhoff, L. E. Halliburton, et al., J. Appl. Phys. 60, 3553 (1986). https://doi.org/10.1063/1.337611

    Article  ADS  Google Scholar 

  17. R. Grousson, M. Henry, S. Mallick, et al., J. Appl. Phys. 54, 3012 (1983). https://doi.org/10.1063/1.332504

    Article  ADS  Google Scholar 

  18. S. M. A. Mirzaee and J.-M. Nunzi, J. Opt. Soc. Am. B 36, 53 (2019). https://doi.org/10.1364/JOSAB.36.000053

    Article  ADS  Google Scholar 

  19. B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Elektron. 7, 5 (1980). https://doi.org/10.1070/QE1980v010n01ABEH009843

    Article  ADS  Google Scholar 

  20. A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevskii, et al., Crystallogr. Rep. 58 (1), 49 (2013).

    Article  ADS  Google Scholar 

  21. D. Irzhak and D. Roshchupkin, AIP Adv. 3, 102108 (2013). https://doi.org/10.1063/1.4824636

  22. A. G. Kulikov, A. E. Blagov, A. S. Ilin, et al., J. Appl. Phys. 127, 065106 (2020). https://doi.org/10.1063/1.5131369

  23. A. G. Kulikov, A. E. Blagov, N. V. Marchenkov, et al., Phys. Solid State 62 (12), 2384 (2020).

    Article  ADS  Google Scholar 

  24. N. V. Marchenkov, A. G. Kulikov, I. I. Atknin, et al., Usp. Fiz. Nauk 189 (2), 187 (2019). https://doi.org/10.3367/UFNr.2018.06.038348

    Article  Google Scholar 

  25. A. E. Blagov, Yu. V. Pisarevskii, A. V. Targonskii, et al., Phys. Solid State 59 (5), 973 (2017).

    Article  ADS  Google Scholar 

  26. A. R. Mkrtchyan, A. E. Blagov, V. R. Kocharyan, et al., J. Contemp. Phys. (Armenian Acad. Sci.) 54, 210 (2019). https://doi.org/10.3103/S1068337219020142

  27. A. G. Kulikov, N. V. Marchenkov, A. E. Blagov, et al., Akust. Zh. 62, 675 (2016). https://doi.org/10.7868/S0320791916050087

    Article  Google Scholar 

  28. Ya. A. Eliovich, V. I. Akkuratov, A. V. Targonskii, and A. E. Blagov, Crystallogr. Rep. 63 (5), 724 (2018).

    Article  ADS  Google Scholar 

  29. Ya. A. Eliovich, V. I. Akkuratov, A. V. Targonskii, et al., Poverkhnost’: Rentgen., Sinkhrotron. Neitr. Issled., No. 8, 3 (2020). https://doi.org/10.31857/S1028096020080075

  30. D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (CRC Press, London, 1998), p. 252.

    Book  Google Scholar 

  31. N. V. Marchenkov, A. G. Kulikov, A. A. Petrenko, et al., Rev. Sci. Instrum. 89, 095105 (2018). https://doi.org/10.1063/1.5036955

  32. S. Annaka and A. Nemoto, J. Appl. Crystallogr. 10, 354 (1977). https://doi.org/10.1107/S0021889877013624

    Article  Google Scholar 

  33. M. V. Koval’chuk, E. K. Kov’ev, and Z. G. Pinsker, Kristallografiya 20 (1), 42 (1975).

    Google Scholar 

  34. R. T. Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971). https://doi.org/10.1063/1.1660528

    Article  ADS  Google Scholar 

  35. J. Kushibiki, I. Takanaga, M. Arakawa, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1315 (1999). https://doi.org/10.1109/58.796136

    Article  Google Scholar 

  36. F. Schmidt, A. L. Kozub, U. Gerstmann, et al., Crystals 11, 542 (2021). https://doi.org/10.3390/cryst11050542

    Article  Google Scholar 

  37. G. A. Smolenskii, N. N. Krainik, N. P. Khuchua, et al., Phys. Status Solidi B 13, 309 (1966). https://doi.org/10.1002/pssb.19660130202

    Article  ADS  Google Scholar 

  38. K. K. Wong, Properties of Lithium Niobate (IET, London, 2002).

    Google Scholar 

  39. K. Brands, M. Falk, D. Haertle, et al., Appl. Phys. B 91, 279 (2008). https://doi.org/10.1007/s00340-008-2989-3

    Article  ADS  Google Scholar 

  40. A. M. Glass, D. von der Linde, D. H. Auston, et al., J. Electron. Mater. 4, 915 (1975). https://doi.org/10.1007/BF02660180

    Article  ADS  Google Scholar 

  41. S. T. Popescu, A. Petris, and V. I. Vlad, J. Appl. Phys. 113, 043101 (2013). https://doi.org/10.1063/1.4788696

  42. A. A. Blistanov, Acoustic Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  43. J. A. De Toro, M. D. Serrano, A. G. Gabanes, et al., Opt. Commun. 154, 23 (1998). https://doi.org/10.1016/S0030-4018(98)00298-3

    Article  ADS  Google Scholar 

  44. M. Holtz, C. Hauf, A. A. H. Salvador, et al., Phys. Rev. B 94, 104302 (2016). https://doi.org/10.1103/PhysRevB.94.104302

  45. A. G. Kulikov, Yu. V. Pisarevskii, A. E. Blagov, et al., Phys. Solid State 61 (4), 548 (2019).

    Article  ADS  Google Scholar 

  46. A. V. Golenishchev-Kutuzov, V. A. Golenishchev-Kutuzov, and R. I. Kalimullin, Usp. Fiz. Nauk 170 (7), 697 (2000). https://doi.org/10.3367/UFNr.0170.200007a.0697

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T.R. Volk for valuable comments.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre (FSRC) “Crystallography and Photonics,” Russian Academy of Sciences, as it pertains to the preparation of crystal samples, development of methodical approach and performance of research (project no. 075-15-2021-1362), and the Russian Foundation of Basic Research as it pertains to the experimental data processing (project no. 19-29-12037 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Pilyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilyak, F.S., Kulikov, A.G., Pisarevsky, Y.V. et al. Separation of the Mechanisms of Photoinduced Deformations in Crystals Using Time-Resolved X-ray Diffractometry. Crystallogr. Rep. 67, 791–798 (2022). https://doi.org/10.1134/S1063774522050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522050121

Navigation