Skip to main content
Log in

Nanoscale Strain Imaging using Coherent X-ray Light Sources

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Coherence properties available from the advanced X-ray synchrotrons and X-ray Free Electron Laser sources bring the opportunities to get new information of the dynamics and local structures non-destructively. Here we review recent progress of the coherent X-ray diffraction imaging technique for measuring internal strain distribution of the nanomaterial systems. We introduce the general coherence properties of the sources and show the fundamental principle and technical aspects of the technique. Some examples of the applications are shown for various nanostructures, grains in polycrystalline films, and semiconducting devices even with in situ and operando conditions. We discuss the future development of the technique in terms of the understanding and control of the strains, which are very crucial in nanomaterial design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Bilderback, P. Elleaume and E. Weckert, J. Phys. B: At. Mol. Opt. Phys. 38, S773 (2005).

    Article  Google Scholar 

  2. G. Grübel, A. Madsen and A. Robert, Soft-Matter Characterization: X-ray photon correlation spectroscopy (Springer-Verlag, 2008).

    Google Scholar 

  3. H. Kim et al., Phys. Rev. Lett. 90, 068302 (2003).

    Article  ADS  Google Scholar 

  4. J. Miao et al., Nature 400, 342 (1999).

    Article  ADS  Google Scholar 

  5. M. Pfeifer et al., Nature 442, 63 (2006).

    Article  ADS  Google Scholar 

  6. S. Eisebitt et al., Nature 432, 885 (2004).

    Article  ADS  Google Scholar 

  7. J. Carnis et al., Scientific Reports 4, 6017 (2014).

    Google Scholar 

  8. F. Lehmkühler et al., Scientific Reports 5, 17193 (2015).

    Article  ADS  Google Scholar 

  9. M. M. Seibert et al., Nature 470, 78 (2011).

    Article  ADS  Google Scholar 

  10. T. Gorkhover et al., Nat. Photonics 12, 150 (2018).

    Article  ADS  Google Scholar 

  11. P. Emma et al., Nat. Photonics 4, 641 (2010).

    Article  ADS  Google Scholar 

  12. C. Gutt et al., Phys. Rev. Lett. 108, 024801 (2012).

    Article  ADS  Google Scholar 

  13. J. Carnis, Coherent X-ray scattering study of dynamics and nanostructures, Ph. D dissertation, College of Science, Sogang University, Seoul, Korea, 2015.

    Google Scholar 

  14. J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics (Wiley, 2011).

    Google Scholar 

  15. A. Singer et al., Phys. Rev. Lett. 101, 254801 (2008).

    Article  ADS  Google Scholar 

  16. A. Singer et al., Optics Express 20, 17480 (2012).

    Article  ADS  Google Scholar 

  17. I. A. Vartanyants et al., Phys. Rev. Lett. 107, 144801 (2011).

    Article  ADS  Google Scholar 

  18. M. Sutton et al., Nature (London) 352, 608 (1991).

    Article  ADS  Google Scholar 

  19. S. Lee et al., Optics Express 21, 24647 (2013).

    Article  ADS  Google Scholar 

  20. S. Lee et al., Optics Express 20, 9790 (2012).

    Article  ADS  Google Scholar 

  21. F. Lehmkühler et al., Scientific Reports 4, 5234 (2014).

    Google Scholar 

  22. K. Amane et al., Scientific Reports 8, 831 (2018).

    Article  ADS  Google Scholar 

  23. K. Yun et al., (unpublished).

  24. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).

    Google Scholar 

  25. D. Sayre, Acta Cryst. 5, 843 (1952).

    Google Scholar 

  26. A. P. Mancuso and G. J. Williams, Nat. Photonics. 6, 574 (2012).

    Article  ADS  Google Scholar 

  27. J. R. Fienup, Appl. Opt. 21, 2758 (1982).

    Article  ADS  Google Scholar 

  28. W. Cha et al., New J. Phys. 12, 035022 (2010).

    Article  Google Scholar 

  29. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

    Google Scholar 

  30. J. R. Fienup, Opt. Lett. 3, 27 (1978).

    Article  ADS  Google Scholar 

  31. J. Miao et al., Phys. Rev. Lett. 89, 088303 (2002).

    Article  ADS  Google Scholar 

  32. R. Bates, Optik 61, 247 (1982).

    Google Scholar 

  33. I. K. Robinson et al., Phys. Rev. Lett. 87, 195505 (2001).

    Article  ADS  Google Scholar 

  34. G. J. Williams et al., Phys. Rev. Lett. 90, 175501 (2003).

    Article  ADS  Google Scholar 

  35. I. K. Robinson and R. Harder, Nat. Mater. 8, 291 (2009).

    Article  ADS  Google Scholar 

  36. W. Cha et al., Nat. Mater. 12, 729 (2013).

    Article  ADS  Google Scholar 

  37. R. Harder et al., Phys. Rev. B 76, 115425 (2007).

    Article  ADS  Google Scholar 

  38. H. N. Chapman et al., J. Opt. Soc. Am. A 23, 1179 (2006).

    Article  ADS  Google Scholar 

  39. M. Watari et al., Nat. Mater. 10, 862 (2011).

    Article  ADS  Google Scholar 

  40. M. C. Newton et al., Nat. Mater. 9, 120 (2010).

    Article  ADS  Google Scholar 

  41. J. N. Clark et al., Nat. Commun. 3, 993 (2012).

    Article  Google Scholar 

  42. V. Favre-Nicolin et al., New J. Phys. 12, 035013 (2010).

    Article  Google Scholar 

  43. S. Labat et al., ACS Nano 9, 9210 (2015).

    Article  Google Scholar 

  44. A. Davtyan et al., New J. Phys. 18, 063021 (2016).

    Article  Google Scholar 

  45. A. Davtyan et al., J. Appl. Cryst. 50, 673 (2017).

    Article  Google Scholar 

  46. A. A. Minkevich et al., Phys. Rev. B 76, 104106 (2007).

    Article  ADS  Google Scholar 

  47. G. Xiong et al., Appl. Phys. Lett, 99, 114103 (2011).

    Article  ADS  Google Scholar 

  48. G. Xiong et al., Adv. Mater. 26, 7747 (2014).

    Article  Google Scholar 

  49. A. Ulvestad et al., Nano Lett. 15, 4066 (2015).

    Article  ADS  Google Scholar 

  50. X. Huang et al., Nano Lett. 15, 7644 (2015).

    Article  ADS  Google Scholar 

  51. N. Vaxelaire et al., Acta Materialia 78, 46 (2014).

    Article  Google Scholar 

  52. A. Yau et al., Science 356, 739 (2017).

    Article  ADS  Google Scholar 

  53. A. Yau et al., ACS Nano 11, 10945 (2017).

    Article  Google Scholar 

  54. A. Ulvestad et al., Nat. Commun. 6, 10092 (2015).

    Article  Google Scholar 

  55. A. Ulvestad et al., Nat. Mat. 16, 565 (2017).

    Article  Google Scholar 

  56. D. Kim et al., Nat. Commun. 9, 3422 (2018).

    Article  ADS  Google Scholar 

  57. W. Cha et al., Adv. Funct. Mater. 27, 1700331 (2017).

    Article  Google Scholar 

  58. Y. K. Chen-Wiegart et al., Nanoscale 9, 5686 (2017).

    Article  Google Scholar 

  59. A. Ulvestad et al., Nano Lett. 14, 5123 (2014).

    Article  ADS  Google Scholar 

  60. A. Ulvestad et al., Phys. Chem. Chem. Phys. 17, 10551 (2015).

    Article  Google Scholar 

  61. A. Ulvestad et al., Science 348, 1344 (2015).

    Article  ADS  Google Scholar 

  62. J. N. Clark et al., Science 341, 56 (2013).

    Article  ADS  Google Scholar 

  63. G. V. Hartland, J. Chem. Phys. 116, 8048 (2002).

    Article  ADS  Google Scholar 

  64. K. Ichiyanagi et al., Phys. Rev. B 84, 024110 (2011).

    Article  ADS  Google Scholar 

  65. J. N. Clark et al., PNAS 112, 7444 (2015).

    Article  ADS  Google Scholar 

  66. M. J. Cherukara et al., Nano Lett. 17, 1102 (2017).

    Article  ADS  Google Scholar 

  67. M. J. Cherukara et al., Nano Lett. 17, 7696 (2017).

    Article  ADS  Google Scholar 

  68. A. Ulvestad et al., Scientific Reports 7, 9823 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF-2014R1A2A1A10052454 2015R1A5A1009962, 2016R1A6B2A02005468, and 2017K1A3A7A09016379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Choi, S., Yun, K. et al. Nanoscale Strain Imaging using Coherent X-ray Light Sources. J. Korean Phys. Soc. 73, 793–804 (2018). https://doi.org/10.3938/jkps.73.793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.793

Keywords

Navigation