Skip to main content
Log in

Growth of the KR3F10 (R = Tb–Er) Compounds by the Vertical Directional Crystallization Method. II. Refinement of the Character of Melting, Growth, and Some Physical Properties of KDy3F10 Crystals

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

KDy3F10 crystals have been grown from melt by the Bridgman technique. The incongruent character of melting of this compound is confirmed. The optimal melt composition for growing KDy3F10 crystals has been determined experimentally and found to be 27.0 ± 0.5 mol % KF. KDy3F10, as well as KTb3F10, is a phase of variable composition. It is characterized by the presence of a small homogeneity region, where the cubic lattice (sp. gr. \(Fm\bar {3}m\)) parameter is limited to the range from 11.6276(2) to 11.6118 (2) Å. The temperature dependence of the thermal conductivity of KDy3F10 and DyF3 crystals has been investigated for the first time, and some of their optical characteristics have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. N. Karimov and I. I. Buchinskaya, Crystallogr. Rep. 66 (3), 535 (2021). https://doi.org/10.1134/S1063774521030081

    Article  ADS  Google Scholar 

  2. M. R. Majewski, R. I. Woodward, and S. D. Jackson, Laser Photonics Rev. 14, 1900195 (2020). https://doi.org/10.1002/lpor.201900195

    Article  ADS  Google Scholar 

  3. D. Vojna, O. Slezák, A. Lucianetti, and T. Mocek, Appl. Sci. 9 (15), 3160 (2019). https://doi.org/10.3390/app9153160

    Article  Google Scholar 

  4. A. V. Vinokurov, B. Z. Malkin, and A. L. Stolov, Phys. Solid State 38 (3), 415 (1996).

    ADS  Google Scholar 

  5. S. L. Chamberlain, G. Luo, and L. R. Corruccini, Phys. Rev. B 67, 134414 (2003). https://doi.org/10.1103/PhysRevB.67.134414

    Article  ADS  Google Scholar 

  6. C. Li, D. Yang, Z. Cheng, et al., Cryst. Eng. Commun. 14, 670 (2012). https://doi.org/10.1039/c1ce06087b

    Article  Google Scholar 

  7. Y. Fangtian, H. Shihua, and S. Qiufeng, J. Rare Earth 28 (5), 676 (2010). https://doi.org/10.1016/S1002-0721(09)60177-0

  8. N. M. Khaidukov, T. G. Filatova, M. B. Ikrami, and P. P. Fedorov, Inorg. Mater. 29 (7), 1152 (1993).

    Google Scholar 

  9. A. De Kozak and M. Almai, Rev. Chim. Miner. 15, 139 (1978).

    Google Scholar 

  10. E. I. Ardashnikova, M. P. Borzenkova, and A. V. Novoselova, Russ. J. Inorg. Chem. 25 (6), 833 (1980).

    Google Scholar 

  11. P. P. Fedorov, Russ. J. Inorg. Chem. 44 (11), 1703 (1999).

    Google Scholar 

  12. U. V. Valiev, D. N. Karimov, G. W. Burdick, et al., J. Appl. Phys. 121, 243105 (2017). https://doi.org/10.1063/1.4989839

    Article  ADS  Google Scholar 

  13. N. M. Khaidukov, P. P. Fedorov, and N. A. Abramov, Inorg. Mater. 27 (12), 2243 (1991).

    Google Scholar 

  14. T. M. Glushkova, D. N. Karimov, E. A. Krivandina, et al., Crystallogr. Rep. 54 (4), 603 (2009). https://doi.org/10.1134/S1063774509040105

    Article  ADS  Google Scholar 

  15. A. F. Konstantinova, E. A. Krivandina, D. N. Karimov, and B. P. Sobolev, Crystallogr. Rep. 55 (6), 990 (2010). https://doi.org/10.1134/S1063774510060143

    Article  ADS  Google Scholar 

  16. S. S. Batsanov, Structural Refractometry (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  17. V. Vasyliev, E. G. Villora, M. Nakamura, et al., Opt. Express 20 (13), 14460 (2012). https://doi.org/10.1364/OE.20.014460

    Article  ADS  Google Scholar 

  18. P. A. Popov, A. A. Sidorov, E. A. Kul’chenkov, et al., Ionics 23 (1), 233 (2017). https://doi.org/10.1007/s11581-016-1802-2

    Article  Google Scholar 

  19. P. A. Popov, P. P. Fedorov, V. V. Semashko, et al., Dokl. Phys. 54 (5), 221 (2009). https://doi.org/10.1134/S1028335809050012

    Article  ADS  Google Scholar 

  20. D. N. Karimov, I. I. Buchinskaya, N. A. Arkharova, et al., Crystals 11, 285 (2021). https://doi.org/10.3390/cryst11030285

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N. A. Ivanovskaya, T. B. Kosova, and B. V. Nabatov for their help in carrying out experiments.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-02-00877, in the part concerning the development of the methodology for growing crystals and by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the characterization of crystal properties using equipment of the Shared Research Center of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Buchinskaya.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, D.N., Buchinskaya, I.I., Popov, P.A. et al. Growth of the KR3F10 (R = Tb–Er) Compounds by the Vertical Directional Crystallization Method. II. Refinement of the Character of Melting, Growth, and Some Physical Properties of KDy3F10 Crystals. Crystallogr. Rep. 66, 1133–1137 (2021). https://doi.org/10.1134/S1063774521060171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521060171

Navigation