Skip to main content
Log in

Structural Diagnostics of Biological Systems Based on X-Ray Absorption Spectroscopy

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The potential and prospects of  X-ray absorption spectroscopy (XAS) as a tool for studying biological systems and as an additional technique for increasing the crystallographic data accuracy have been considered. The advantages of these techniques for analyzing biological systems with low concentrations of elements studied and the possibilities for reducing the destructive effect of X rays are discussed. The development of these techniques makes it possible to investigate protein systems during biological processes under the conditions maximally close to physiological.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. J. Durham, J. B. Pendry, and C. H. Hodges, Solid State Commun. 38, 159 (1981).

    Article  ADS  Google Scholar 

  2. PDB-Protein Data Bank. http://www.rcsb.org/.

  3. J. J. H. Pushie. J. Cotelesage, P. Grochulski, et al., J. Inorg Biochem. 115, 127 (2012).

    Article  Google Scholar 

  4. D. E. Tronrud and B. W. Matthews, Protein Sci. 18 (1), 2 (2009).

    Google Scholar 

  5. G. N. George and S. J. George, Trends Biochem. Sci. 13, 369 (1988).

    Article  Google Scholar 

  6. G. Bunker, Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  7. G. V. Fetisov, Synchrotron Radiation: Methods for Structural Studies of Materials (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  8. E. F. Aziz, N. Ottosson, S. Bonhommeau, et al., Phys. Rev. Lett. 102, 68103 (2009).

    Article  ADS  Google Scholar 

  9. W. Shi, M. Punta, and J. Bohon, Genome Res. 21, 898 (2011).

    Article  Google Scholar 

  10. J. A. Bokhoven and C. Lamberti, X-Ray Absorption and X-Ray Emission Spectroscopy. Theory and Applications (Wiley, New York, 2016).

    Book  Google Scholar 

  11. A. Bianconi, XANES Spectroscopy, in: X-Ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS and XANES (Wiley, New York, 1988).

    Google Scholar 

  12. T. Glaser, B. Hedman, K. O. Hodgson, et al., Acc. Chem. Res. 33, 859 (2000).

    Article  Google Scholar 

  13. L. Giachini, G. Veronesi, F. Francia, et al., J. Synchrotron Radiat. 17, 41 (2010).

    Article  Google Scholar 

  14. M. C. Feiters, A. P. Eijkelenboom, H. F. Nolting, et al., J. Synchrotron Radiat. 10, 86 (2003).

    Article  Google Scholar 

  15. P. Knauth and J. Schoonman, Nanocomposites: Ionic Conducting Materials and Structural Spectroscopies (Springer, New York, 2007).

    Google Scholar 

  16. B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer, Berlin, 1986).

    Book  Google Scholar 

  17. J. J. Rehr and A. L. Ankudinov, J. Synchrotron Radiat. 10, 43 (2003).

    Article  Google Scholar 

  18. S. A. Guda, A. A. Guda, M. A. Soldatov, et al., J. Chem. Theory Comput. 11, 4512 (2015).

    Article  Google Scholar 

  19. M. Benfatto, A. Congiu-Castellano, A. Daniele, et al., J. Synchrotron Radiat. 8, 267 (2001).

    Article  Google Scholar 

  20. J. M. Holton, J. Synchrotron Radiat. 14, 51 (2007).

    Article  ADS  Google Scholar 

  21. P. Faller, C. Hureau, P. Dorlet, et al., Coord. Chem. Rev. 256, 2381 (2012).

    Article  Google Scholar 

  22. J. E. Penner-Hahn, Coord. Chem. Rev. 249, 161 (2005).

    Article  Google Scholar 

  23. A. Bianconi, A. Congiu-Castellano, P. J. Durham, et al., Nature 318, 685 (1985).

    Article  ADS  Google Scholar 

  24. A. Arcovito, M. Benfatto, M. Cianci, et al., PNAS 104, 6211 (2007).

    Article  ADS  Google Scholar 

  25. M. W. Mara, R. G. Hadt, M. E. Reinhard, et al., Science 356, 1276 (2017).

    Article  ADS  Google Scholar 

  26. R. M. Evans and F. A. Armstrong, Methods Mol. Biol. 1122, 73 (2014).

    Article  Google Scholar 

  27. S. Ritimukta, J. Synchrotron Radiat. 25, 944 (2018).

    Article  Google Scholar 

  28. J. Chan, Z. Huang, M. Merrifield, et al., Coord. Chem. Rev. 233–234, 319 (2002).

    Article  Google Scholar 

  29. F. Boffi, I. Ascone, S. Della-Longa, et al., Eur. Biophys. J. 32, 329 (2003).

    Article  Google Scholar 

  30. F. Boffi, A. Congiu-Castellano, A. Varoli-Piazza, et al., J. Synchrotron Radiat. 8, 196 (2001).

    Article  Google Scholar 

  31. A. J. Roskams and J. R. Connor, Proc. Natl. Acad. Sci. 87, 9024 (1990).

    Article  ADS  Google Scholar 

  32. M. Vaŝák, J. Trace Elem. Med. Bio. 19, 13 (2005).

    Article  Google Scholar 

  33. J. Chan, M. E. Merrifield, A. V. Soldatov, et al., Inorg. Chem. 44, 4923 (2005).

    Article  Google Scholar 

  34. G. Yalovega, G. Smolentsev, A. Soldatov, et al., Nucl. Instrum. Methods Phys. Res. A 575, 168 (2007).

    Article  ADS  Google Scholar 

  35. A. V. Soldatov, G. Smolentsev, and G. Yalovega, Radiat. Phys. Chem. 75, 1901 (2006).

    Article  ADS  Google Scholar 

  36. A. V. Soldatov, G. E. Yalovega, G. Yu. Smolentsev, et al., Biophysics 46, 595 (2001).

    Google Scholar 

  37. G. E. Yalovega, G. Yu. Smolentsev, A. P. Kovtun, et al., Biophysics 45, 977 (2000).

    Google Scholar 

  38. M. Kremennaya, M. A. Soldatov, Yu. S. Podkovyrina, et al., J. Struct. Chem. 58, 1213 (2017).

    Article  Google Scholar 

  39. L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, Biomed. Res. Int. 2014, 151479 (2014).

    Article  Google Scholar 

  40. C. Hureau, H. Eury, R. Guillot, et al., Chem. Eur. J. 17, 10151 (2011).

    Article  Google Scholar 

  41. R. Vassar, B. D. Bennett, S. Babu-Khan, et al., Science 286, 735 (1999).

    Article  Google Scholar 

  42. M. A. Kremennaya, M. A. Soldatov, V. A. Streltsov, et al., J. Phys. Conf. Ser. 712, 012138 (2016).

    Article  Google Scholar 

  43. R. G. Shulman, P. Eisenberger, W. E. Blumberg, et al., Proc. Natl Acad. Sci. U.S.A. 72, 4003 (1975).

    Article  ADS  Google Scholar 

  44. P. Glatzel, L. Jacquamet, U. Bergmann, et al., Inorg. Chem. 41, 3121 (2002).

    Article  Google Scholar 

  45. M. P. M. Marques, D. Gianolio, S. Ramos, et al., Inorg. Chem. 56, 10893 (2017).

    Article  Google Scholar 

  46. T. Khare, Y. Chishti, and L. A. Finney, Prot. Electrophor. 869, 533 (2012).

    Article  Google Scholar 

  47. R. G. Castillo, R. Banerjee, C. J. Allpress, et al., J. Am. Chem. Soc. 139, 18024 (2017).

    Article  Google Scholar 

  48. S. Mebs, R. Kositzki, and J. et. al. Duan, BBA–Bioenerg. 1859, 28 (2018).

  49. A. Simon, D. Hare, N. L. Jenkins, et al., Sci. Rep. 6, 20350 (2016).

    Article  Google Scholar 

  50. E. Becker, P. Carlsson, H. Grönbeck, et al., J. Catal. 252, 11 (2007).

    Article  Google Scholar 

  51. Er. A. Oguz, J. Chen, and P. M. Rentzepis, J. Appl. Phys. 112, 031101 (2012).

  52. W. Gawelda, C. Bressler, M. Saes, et al., Phys. Scr. 115, 102 (2005).

    Article  Google Scholar 

  53. C. Bressler, R. Abela, and M. Chergui, Z. Kristallogr. 223, 307 (2008).

    Article  Google Scholar 

  54. M. Benfatto, S. Della-Longa, Y. Qinc, et al., Biophys. Chem. 110, 191 (2004).

    Article  Google Scholar 

  55. V. López-Flores, S. Ansell, D. T. Bowron, et al., Rev. Sci. Instrum. 78 (1), 013109 (2007).

    Article  ADS  Google Scholar 

  56. W. Wang, I. Kuzmenko, and D. Vaknin, Phys. Chem. Chem. Phys. 16, 13517 (2014).

    Article  Google Scholar 

  57. N. N. Novikova, M. V. Kovalchuk, E. A. Yurieva, et al., Phys. Chem. B 123, 8370 (2019).

    Article  Google Scholar 

  58. N. N. Novikova, S. N. Yakunin, M. V. Koval’chuk, et al., Crystallogr. Rep. 64, 952 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-29-12052 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Yalovega.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalovega, G.E., Kremennaya, M.A. Structural Diagnostics of Biological Systems Based on X-Ray Absorption Spectroscopy. Crystallogr. Rep. 65, 813–820 (2020). https://doi.org/10.1134/S1063774520060395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060395

Navigation