Skip to main content
Log in

Preliminary Structural Study of Inactivated Yellow Fever Virus

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Here we present a protocol for the isolation, purification, and inactivation of the yellow fever virus (YFV) aimed to facilitate high-resolution structure determination using cryo-electron microscopy (cryo-EM). Cryo-EM studies require the concentration of viral particles to be at least 1012 particle/mL. The concentration of the sample was evaluated by a combination of methods, including the plaque-forming assay, spectrophotometry, and protein polyacrylamide gel electrophoresis. High purity of the sample was confirmed by electrophoresis and transmission electron microscopy. The cryo-EM data set was collected and the 2D classification of viral particles was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. J. Barrows, R. K. Campos, K. Liao, et al., Chem. Rev. 118, 4448 (2018).

    Article  Google Scholar 

  2. T. P. Monath, Antiviral Res. 78, 16 (2008).

    Article  Google Scholar 

  3. K. V. Pugachev, F. Guirakhoo, D. W. Trent, and T. P. Monath, Int. J. Parasitol. 33, 567 (2003).

    Article  Google Scholar 

  4. CDC, Yellow Fever Maps (2018, accessed on April 17, 2019. https://www.cdc.gov/yellowfever/maps/index.

  5. C. Paules and A. S. Fauci, New Engl. J. Med. 376, 1397 (2017).

    Article  Google Scholar 

  6. T. P. Monath, C. K. Lee, J. G. Julander, et al., Vaccine 14, 3827 (2010).

    Article  Google Scholar 

  7. A. D. Barrett and D. E. Teuwen, Curr. Opin. Immunol. 21, 308 (2009).

    Article  Google Scholar 

  8. M. Martin, T. F. Tsai, C. B. Cropp, et al., Lancet 358, 98 (2001).

    Article  Google Scholar 

  9. P. F. Vasconcelos, E. J. Luna, R. Galler, et al., Lancet 358, 91 (2001).

    Article  Google Scholar 

  10. R. C. Chan, D. J. Penney, D. Little, et al., Lancet 358, 121 (2001).

    Article  Google Scholar 

  11. T. P. Pato, M. C. O. Souza, D. A. Mattos, et al., Vaccine 37, 3214 (2019).

    Article  Google Scholar 

  12. D. Ruzek, Ž. T. Avšič, J. Borde, et al., Antiviral Res. 164, 23 (2019).

    Article  Google Scholar 

  13. X. Zhang, R. Jia, H. Shen, et al., Viruses 9, 338 (2017).

    Article  Google Scholar 

  14. M. Brecher, H. Chen, B. Liu, et al., PloS One 10, e0130062 (2015).

    Article  Google Scholar 

  15. M. Bollati, K. Alvarez, R. Assenberg, et al., Antiviral Res. 87, 125 (2010).

    Article  Google Scholar 

  16. F. A. Ray, K. Stiasny, M. Ch. Vaney, et al., EMBO Rep. 19, 206 (2018).

    Article  Google Scholar 

  17. E. H. Egelman, Biophys. J. 110, 1008 (2016).

    Article  ADS  Google Scholar 

  18. Y. Zhang, J. Corver, P. R. Chipman, et al., EMBO J. 22, 2604 (2003).

    Article  Google Scholar 

  19. R. Stass, W. M. Ng, Y. Ch. Kim, et al., Adv. Virus Res. 105, 35 (2019).

    Article  Google Scholar 

  20. M. Sevvana, F. Long, A. S. Miller, et al., Structure 26, 1169 (2018).

    Article  Google Scholar 

  21. T. J. Chambers and M. S. Diamond, Adv. Virus Res. 60, 273 (2003).

    Article  Google Scholar 

  22. L. J. Reed and H. Muench, Am. J. Epidemiol. 27, 493 (1938).

    Article  Google Scholar 

  23. A. P. Ivanov, T. D. Klebleeva, and O. E. Ivanova, Vopr.Virusol. 65, 21 (2020).

    Article  Google Scholar 

  24. M. Trauchessec, O. Lambert, P. Bonnafous, et al., Vaccine 37, 3580 (2019).

    Article  Google Scholar 

  25. D. Tegunov and P. Cramer, Nat. Methods 16, 1146 (2019).

    Article  Google Scholar 

  26. J. Zivanov, T. Nakane, B. Forsberg, et al., eLife 7, e42166 (2018).

    Article  Google Scholar 

  27. R. C. Pereira, A. N. M. R. Silva, M. C. Souza, et al., Vaccine 33, 4261 (2015).

    Article  Google Scholar 

  28. Sh. V. A. Coelho, S. R. L. Neris, M. P. Papa, et al., J. Virol. Methods 246, 65 (2017).

    Article  Google Scholar 

  29. H. Toriniwa and T. Komiya, Biologicals 35, 221 (2007).

    Article  Google Scholar 

  30. N. Mittereder, K. L. March, and B. C. Trapnell, J. Virol. 70, 7498 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to K.K. Tuchinskaya for discussion and valuable advice.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-02-40026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Samygina.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichkur, E.B., Samygina, V.R., Ivanova, A.L. et al. Preliminary Structural Study of Inactivated Yellow Fever Virus. Crystallogr. Rep. 65, 915–921 (2020). https://doi.org/10.1134/S1063774520060267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060267

Navigation