Skip to main content
Log in

Nanostructured Crystals of Fluorite Phases Sr1 – xRxF2 + x (R Are Rare-Earth Elements) and Their Ordering. 15. Concentration Dependence of the Defect Structure of As Grown Nonstoichiometric Phases Sr1 – xRxF2 + x (R = Sm, Gd)

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The defect structure of as grown single crystals Sr1 – xSmxF2 + x (x = 0.14, 0.26) and Sr1 – xGdxF2 + x (x = 0.12, 0.19, 0.30) grown under identical conditions was studied by X-ray diffraction. All crystals belong to the CaF2 structure type, sp. gr. \(Fm\bar {3}m\). All phases contain interstitial fluoride ions in the 48i site and vacancies in the main anionic motif. In Sr0.70Gd0.30F2.30 interstitial fluoride anions were found also in the 4b site; in Sr0.88Gd0.12F2.12, in the 32f site. Relaxation displacements of a part of F(8c) anions to the 32f site are observed in Sr0.86Sm0.14F2.14. Displacements of cations to the 24e site occur in all the phases under study; in the phases with R = Gd, there are also displacements to the 32f site. A model of the defect structure of the phases Sr1 ‒ xRxF2 + x (R = Sm, Gd) is proposed. According to this model, interstitial fluoride anions and R3+ cations are grouped into octacubic clusters [Sr14 – nRnF64 + n]. The average number of R3+ per cluster decreases from 6 to 4.5 with increasing х, the volume of the cluster core increases from 61.2(1) to 65.9(2) Å3, and the volume per cluster decreases from 2419.9(5) to 783.5(2) Å3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. B. P. Sobolev, D. N. Karimov, S. N. Sul’yanov, et al., Crystallogr. Rep. 54 (1), 122 (2009).

    Article  ADS  Google Scholar 

  2. E. A. Sulyanova, V. N. Molchanov, I. A. Verin, et al., Crystallogr. Rep. 54 (3), 516 (2009).

    Article  ADS  Google Scholar 

  3. T. M. Glushkova, D. N. Karimov, E. A. Krivandina, et al., Crystallogr. Rep. 54 (4), 603 (2009).

    Article  ADS  Google Scholar 

  4. V. A. Fedorov, D. N. Karimov, O. N. Komar’kova, et al., Crystallogr. Rep. 55 (1), 122 (2010).

    Article  ADS  Google Scholar 

  5. N. I. Sorokin, D. N. Karimov, E. A. Sulyanova, et al., Crystallogr. Rep. 55 (4), 662 (2010).

    Article  ADS  Google Scholar 

  6. M. Yu. Gryaznov, S. B. Shotin, V. N. Chuvil’deev, et al., Kristallografiya 56 (6), 1169 (2011).

    Google Scholar 

  7. E. A. Sulyanova, I. A. Verin, and B. P. Sobolev, Crystallogr. Rep. 57 (1), 73 (2012).

    Article  ADS  Google Scholar 

  8. E. A. Sulyanova, D. N. Karimov, and B. P. Sobolev, Crystallogr. Rep. 58 (5), 678 (2013).

    Article  ADS  Google Scholar 

  9. E. A. Sulyanova, D. N. Karimov, S. N. Sulyanov, et al., Crystallogr. Rep. 59 (1), 14 (2014).

    Article  ADS  Google Scholar 

  10. E. A. Sulyanova, D. N. Karimov, S. N. Sulyanov, et al., Crystallogr. Rep. 60 (1), 155 (2015).

    Article  ADS  Google Scholar 

  11. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 60 (6), 959 (2015).

    Article  ADS  Google Scholar 

  12. N. I. Sorokin, D. N. Karimov, E. A. Sulyanova, et al., Crystallogr. Rep. 63 (1), 121 (2018).

    Article  ADS  Google Scholar 

  13. E. A. Sulyanova, N. B. Bolotina, A. I. Kalyukanov, et al., Crystallogr. Rep. 64 (1), 41 (2019).

    Article  ADS  Google Scholar 

  14. E. A. Sulyanova, N. B. Bolotina, D. N. Karimov, et al., Crystallogr. Rep. 64 (2), 216 (2019).

    Article  ADS  Google Scholar 

  15. B. P. Sobolev, K. B. Seiranian, L. S. Garashina, et al., J. Solid State Chem. 28 (1), 51 (1979).

    Article  ADS  Google Scholar 

  16. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014).

    Google Scholar 

  17. P. J. Becker and P. Coppens, Acta Crystallogr. A 30 (2), 129 (1974).

    Article  ADS  Google Scholar 

  18. International Tables for Crystallography, Vol. C, Ed. by A. J. C. Wilson (Kluwer, Dordrecht, 1992).

    Google Scholar 

  19. A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, J. Phys. C 4 (18), 3107 (1971).

    ADS  Google Scholar 

  20. S. Hull and C. C. Wilson, J. Solid State Chem. 100 (1), 101 (1992).

    Article  ADS  Google Scholar 

  21. M. Hofmann, S. Hull, G. J. McIntyre, et al., J. Phys.: Condens. Matter 9 (4), 845 (1997).

    ADS  Google Scholar 

  22. E. A. Sulyanova, V. N. Molchanov, and B. P. Sobolev, Crystallogr. Rep. 53 (4), 565 (2008).

    Article  ADS  Google Scholar 

  23. V. B. Aleksandrov and L. S. Garashina, Dokl. Akad. Nauk SSSR 189 (2), 307 (1969).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 17-00-00118; the preparation of crystalline samples) and the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment using equipment of the Center of Collective Use of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences (study of structural characteristics of crystals).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sulyanova.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulyanova, E.A., Karimov, D.N. & Sobolev, B.P. Nanostructured Crystals of Fluorite Phases Sr1 – xRxF2 + x (R Are Rare-Earth Elements) and Their Ordering. 15. Concentration Dependence of the Defect Structure of As Grown Nonstoichiometric Phases Sr1 – xRxF2 + x (R = Sm, Gd). Crystallogr. Rep. 64, 873–878 (2019). https://doi.org/10.1134/S1063774519050225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519050225

Navigation