Skip to main content
Log in

Nanostructured Crystals of Fluorite Phases Sr1 – xRxF2 + x (R Are Rare-Earth Elements) and Their Ordering. 13: Crystal Structure of SrF2 and Concentration Dependence of the Defect Structure of Nonstoichiometric Phase Sr1 – xLaxF2 + x As Grown (x = 0.11, 0.20, 0.32, 0.37, 0.47)

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The defect structure of as-grown SrF2 and nonstoichiometric phases Sr1 – xLaxF2 + x (x = 0.11, 0.20, 0.32, 0.37, 0.47) single crystals, grown from a melt under identical conditions, has been studied by X-ray diffraction analysis. All crystals belong to the CaF2-type structure, sp. gr. \(Fm\bar {3}m\). Deficit of fluorine anions is found in the 8c site in SrF2. Interstitial anions are not visualized in SrF2 in difference electron-density maps. The Sr1 – xLaxF2 + x phases exhibit the presence of vacancies in the main anion motif and interstitial fluorine ions of three types: in two sites 32f (w, w, w) with different coordinates w and in one site 4b. A model of the defect structure of Sr1 – xLaxF2 + x phase is proposed, according to which interstitial fluorine ions and impurity cations La3+ are grouped into clusters of the [Sr1 – nLanF26] tetrahedral configuration. Calculations based on structural data revealed that the average number of La3+ ions per cluster linearly increases from 2.6 to 3.13 with an increase in the LaF3 concentration. The average crystal volume corresponding to one cluster decreases from 1170.6(3) to 336.1(5) Å3. The volume of the anion cluster core decreases from 2.52(7) to 2.42(7) Å3, passing through a minimum in the composition with x = 0.32, which is similar to that of congruently melting phase, and then increases to 2.44(9) Å3 at х = 0.47. Dynamic thermal displacement of matrix anions in Sr1 – xLaxF2 + x is observed in the [111] direction towards the cubic void center in the anion sublattice. Therefore, according to the mechanism of electrical conductivity, anion jumps are most likely in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. P. Sobolev, D. N. Karimov, S. N. Sul’yanov, et al., Crystallogr. Rep. 54 (1), 122 (2009).

    Article  ADS  Google Scholar 

  2. E. A. Sul’yanova, V. N. Molchanov, I. A. Verin, et al., Crystallogr. Rep. 54 (3), 516 (2009).

    Article  ADS  Google Scholar 

  3. T. M. Glushkova, D. N. Karimov, E. A. Krivandina, et al., Crystallogr. Rep. 54 (4), 603 (2009).

    Article  ADS  Google Scholar 

  4. V. A. Fedorov, D. N. Karimov, O. N. Komar’kova, et al., Crystallogr. Rep. 55 (1), 122 (2010).

    Article  ADS  Google Scholar 

  5. N. I. Sorokin, D. N. Karimov, E. A. Sul’yanova, et al., Crystallogr. Rep. 55 (4), 662 (2010).

    Article  ADS  Google Scholar 

  6. M. Yu. Gryaznov, S. B. Shotin, V. N. Chuvil’deev, et al., Kristallografiya 56 (6), 1169 (2011).

    Google Scholar 

  7. E. A. Sul’yanova, I. A. Verin, and B. P. Sobolev, Crystallogr. Rep. 57 (1), 73 (2012).

    Article  ADS  Google Scholar 

  8. E. A. Sul’yanova, D. N. Karimov, and B. P. Sobolev, Kristallografiya 58 (5), 667 (2012).

    Google Scholar 

  9. E. A. Sul’yanova, D. N. Karimov, S. N. Sul’yanov, et al., Crystallogr. Rep. 59 (1), 14 (2014).

    Article  ADS  Google Scholar 

  10. E. A. Sul’yanova, D. N. Karimov, S. N. Sul’yanov, et al., Crystallogr. Rep. 60 (1), 155 (2015).

    Article  ADS  Google Scholar 

  11. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 60 (6), 959 (2015).

    Article  ADS  Google Scholar 

  12. N. I. Sorokin, D. N. Karimov, E. A. Sul’yanova, et al., Crystallogr. Rep. 63 (1), 121 (2018).

    Article  ADS  Google Scholar 

  13. B. F. Naylor, J. Am. Chem. Soc. 67 (1), 150 (1945).

    Article  Google Scholar 

  14. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60 (1), 33 (1978).

    Article  Google Scholar 

  15. P. P. Fedorov and B. P. Sobolev, J. Less-Common Met. 63 (1), 31 (1979).

    Article  Google Scholar 

  16. B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, J. Solid State Chem. 28 (1), 51 (1979).

    Article  ADS  Google Scholar 

  17. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014). https://doi.org/10.1515/zkri-2014-1737

    Google Scholar 

  18. P. J. Becker and P. Coppens, Acta Crystallogr. A 30 (2), 129 (1974).

    Article  ADS  Google Scholar 

  19. International Tables for Crystallography, Ed. by A. J. C. Wilson (Kluwer, Dordrecht, 1992).

    Google Scholar 

  20. E. A. Sul’yanova, A. P. Shcherbakov, V. N. Molchanov, et al., Crystallogr. Rep. 50 (2), 203 (2005).

    Article  ADS  Google Scholar 

  21. A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 72 (4), 1277 (1968).

    Article  Google Scholar 

  22. V. R. Belosludov, R. I. Efremova, and E. V. Matizen, Fiz. Tverd. Tela 16 (5), 1311 (1974).

    Google Scholar 

  23. C. E. Derington, A. Navrotsky, and M. O’Keeffe, Solid State Commun. 18, 47 (1976).

    Article  ADS  Google Scholar 

  24. W. Schroter and J. Nolting, J. Phys. Colloq. 41 (6), 20 (1980).

    Article  Google Scholar 

  25. L. M. Volodkovich, G. S. Petrov, R. A. Vecher, and A. A. Vecher, Thermochim. Acta 88, 497 (1985).

    Article  Google Scholar 

  26. N. I. Sorokin, Zh. Fiz. Khim. 75 (8), 1528 (2001).

    Google Scholar 

  27. M. W. Thomas, Chem. Phys. Lett. 40, 111 (1976).

    Article  ADS  Google Scholar 

  28. J. Schoonman, Solid State Ionics 1, 121 (1980).

    Article  Google Scholar 

  29. W. L. Filder, Ionic Conductivity of Calcium and Strontium Fluorides, NASA Technical Note D-3816 (1967).

  30. J. Schoonman and Hartog. H. W. Den, Solid State Ionics 7, 9 (1982).

    Article  Google Scholar 

  31. W. Bollmann, Krist. Tech. 15 (2), 197 (1980).

    Article  Google Scholar 

  32. J. Oberschmidt and D. Lazarus, Phys. Rev. B 21, 5823 (1980).

    Article  ADS  Google Scholar 

  33. J. J. Fontanella, M. C. Wintersgill, A. V. Chadwick, et al., J. Phys. C 14, 2451 (1981).

    Article  ADS  Google Scholar 

  34. J. B. Forsyth, C. C. Wilson, and T. M. Sabine, Acta Crystallogr. A 45, 244 (1989).

    Article  Google Scholar 

  35. M. J. Cooper and K. D. Rouse, Acta Crystallogr. A 27, 622 (1971).

    Article  ADS  Google Scholar 

  36. A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, J. Phys. C 4 (18), 3107 (1971).

    ADS  Google Scholar 

  37. S. Hull and C. C. Wilson, J. Solid State Chem. 100 (1), 101 (1992).

    Article  ADS  Google Scholar 

  38. M. Hofmann, S. Hull, G. J. McIntyre, and C. C. Wilson, J. Phys.: Condens. Matter 9 (4), 845 (1997).

    ADS  Google Scholar 

  39. E. A. Sul’yanova, V. N. Molchanov, and B. P. Sobolev, Crystallogr. Rep. 53 (4), 565 (2008).

    Article  ADS  Google Scholar 

  40. L. A. Muradyan, B. A. Maksimov, and V. I. Simonov, Koord. Khim. 12 (10), 1398 (1986).

    Google Scholar 

  41. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39 (2), 17 (1981).

    Article  Google Scholar 

  42. P. P. Fedorov and B. P. Sobolev, Zh. Neorg. Khim. 24 (4), 1038 (1979).

    Google Scholar 

  43. B. P. Sobolev, A. M. Golubev, L. P. Otroshchenko, et al., Crystallogr. Rep. 48 (6), 944 (2003).

    Article  ADS  Google Scholar 

  44. V. B. Aleksandrov and L. S. Garashina, Dokl. Akad. Nauk SSSR, 189 (2), 307 (1969).

    Google Scholar 

  45. A. K. Cheetham, B. E. F. Fender, D. Steele, et al., Solid State Commun. 8 (3), 171 (1970).

    Article  ADS  Google Scholar 

  46. J. P. Laval, A. Mikou, and B. Frit, J. Solid State Chem. 61 (3), 359 (1986).

    Article  ADS  Google Scholar 

  47. R. H. Nafziger and N. Riazance, J. Am. Ceram. Soc. 55 (3), 130 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sulyanova.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulyanova, E.A., Bolotina, N.B., Kalukanov, A.I. et al. Nanostructured Crystals of Fluorite Phases Sr1 – xRxF2 + x (R Are Rare-Earth Elements) and Their Ordering. 13: Crystal Structure of SrF2 and Concentration Dependence of the Defect Structure of Nonstoichiometric Phase Sr1 – xLaxF2 + x As Grown (x = 0.11, 0.20, 0.32, 0.37, 0.47). Crystallogr. Rep. 64, 41–50 (2019). https://doi.org/10.1134/S1063774519010279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519010279

Navigation