Skip to main content
Log in

Effect of Crystallization Front Shape on the Dislocation Density in Germanium Single Crystals

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The effect of crystallization front shape on the dislocation density in Ge single crystals with a diameter of 100 mm, grown by the Czochralski method, has been studied. The dislocation density in crystals with a convex crystallization front is found to be considerably higher. The average dislocation density in experimental ingots with deviation of crystallization front shape from flat in the range from –1.5 to +1.5 mm increases from 75 to 1000 cm–2 and from 75 to 700 cm–2 in the cases of convex and concave fronts, respectively. Minimum dislocation densities are observed for a flat or slightly concave front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Cor Claeys and E. Simoen, Extended Defects in Germanium: Fundamental and Technological Aspects (Springer, Berlin, 2009).

    Book  Google Scholar 

  2. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2003).

    Book  Google Scholar 

  3. A. Chroneos and R. V. Vovk, J. Mater. Sci.: Mater. Electron. 26 (10), 7378 (2015).

    Google Scholar 

  4. F. Dimroth and S. Kurtz, MRS Bull. 32 (3), 230 (2007).

    Article  Google Scholar 

  5. G. Wang, Y. Sun, W. Xiang, et al., J. Cryst. Growth 352, 27 (2012).

    Article  ADS  Google Scholar 

  6. M. G. Mil’vidskii and V. B. Osvenskii, Structural Defects in Semiconductor Single Crystals (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  7. B. L. Indenbom, Izv. Akad. Nauk SSSR, Ser. Fiz. 37 (11), 2258 (1973).

    Google Scholar 

  8. P. V. Kasimkin, V. A. Maskovskih, Y. V. Vasiliev, et al., J. Cryst. Growth 390, 67 (2014).

    Article  ADS  Google Scholar 

  9. V. A. Moskovskikh, P. V. Kasimkin, V. N. Shlegel’, et al., Crystallogr. Rep. 59 (2), 291 (2014).

    Article  ADS  Google Scholar 

  10. I. A. Sluchinskaya, Fundamentals of Semiconductor Materials Science and Technology (Izd-vo MIFI, Moscow, 2002) [in Russian].

    Google Scholar 

  11. 50 Years Progress in Crystal Growth, Ed. by R. S. Feigelson (Elsevier, Amsterdam, 2004). https://www.elsevier.com/books/50-years-progress-in-crystal-growth/feigelson.

    Google Scholar 

  12. CGSim Software. http://www.str-soft.com/products/CGSim/.

  13. O. I. Podkopaev, V. V. Artem’ev, A. D. Smirnov, et al., Tech. Phys. 61 (9), 1286 (2016).

    Article  Google Scholar 

  14. P. K. Konakov, G. E. Verevochkin, L. A. Goryainov, et al., Heat- and Mass Exchange during Single-Crystal Growth (Metallurgiya, Moscow, 1971) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk Krai, and the Krasnoyarsk Krai Foundation for Support of Scientific and Technical Activity, within scientific project no. 16-43-240719.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Shimanskii or T. O. Pavlyuk.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimanskii, A.F., Podkopaev, O.I., Pavlyuk, T.O. et al. Effect of Crystallization Front Shape on the Dislocation Density in Germanium Single Crystals. Crystallogr. Rep. 63, 1183–1186 (2018). https://doi.org/10.1134/S1063774518070222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518070222

Navigation