Skip to main content
Log in

ASTRA 4.0 Program: Data Reduction for Obtaining Structure Results of Extreme Accuracy

  • CRYSTALLOGRAPHIC SOFTWARE AND APPARATUS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Unique methods for processing diffraction data, which guarantee extreme accuracy and reliability, have been implemented in the ASTRA 4.0 software package. The central (data-forming) element is a program for averaging intensities of repeated and equivalent reflections. The ASTRA averaging algorithm makes it possible to calculate the average intensity and its standard uncertainty, which correspond to normal distribution law for errors in data. Such data yield an unbiased estimate of the parameters of refined structural model at minimum reliability factors. To make the averaging program successfully operate, one must introduce all corrections for anisotropic effects into the reflection’s intensities. The following stages of investigation are considered: sample preparation; calibration of diffractometer; and correction for absorption, thermal diffuse scattering, and simultaneous reflections. A significant advantage of the proposed approaches is proven on several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Kendall and A. Stewart, The Advanced Theory of Statistics, Vol. 3, Design & Analysis, & Time-Series (Charles Griffin, London, 1968).

  2. A. P. Dudka, Crystallogr. Rep. 47 (1), 152 (2002).

    Article  ADS  Google Scholar 

  3. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  4. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1979, 2nd ed.; Halsted Press, New York, 1977)

  5. W. A. Paciorek, M. Meyer, and G. Chapuis, J. Appl. Crystallogr. 32, 11 (1999).

    Article  Google Scholar 

  6. J. W. Pflugrath, Acta Crystallogr. D 55, 1718 (1999).

    Article  Google Scholar 

  7. A. Dudka, J. Appl. Crystallogr. 43, 1440 (2010).

    Article  Google Scholar 

  8. A. P. Dudka, Crystallogr. Rep. 60 (4), 601 (2015).

    Article  ADS  Google Scholar 

  9. A. P. Dudka, Crystallogr. Rep. 60 (6), 984 (2015).

    Article  ADS  Google Scholar 

  10. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 56 (3), 443 (2011).

    Article  ADS  Google Scholar 

  11. A. P. Dudka, A. M. Balbashov, and I. S. Lyubutin, Cryst. Growth Des. 16, 4943 (2016).

    Article  Google Scholar 

  12. A. P. Dudka, Crystallogr. Rep. 61 (2), 187 (2016).

    Article  ADS  Google Scholar 

  13. T. K. Herman, S. C. Parks, and J. Scherschligt, J. Appl. Crystallogr. 46, 279 (2013).

    Article  Google Scholar 

  14. L. Ribaud, G. Wu, Yu. Zhang, and P. Coppens, J. Appl. Crystallogr. 34, 76 (2001).

    Article  Google Scholar 

  15. A. P. Dudka, I. A. Verin, and E. S. Smirnova, Crystallogr. Rep. 61 (4), 692 (2016).

    Article  ADS  Google Scholar 

  16. B. T. M. Willis and A. W. Pryor, Thermal Vibrations in Crystallography (Cambridge Univ. Press, 1975).

    Google Scholar 

  17. X. Gonze, Phys. Rev. B 52, 1086 (2005).

    Article  Google Scholar 

  18. A. P. Dudka, M. Kh. Rabadanov, and A. A. Loshmanov, Kristallografiya 34 (4), 818 (1989).

    Google Scholar 

  19. A. P. Dudka, O. N. Khrykina, N. B. Bolotina, et al., J. Alloys Compd. 692, 535 (2017).

    Article  Google Scholar 

  20. R. H. Blessing, Acta Crystallogr. A 51, 33 (1995).

    Article  Google Scholar 

  21. A. P. Dudka, Crystallogr. Rep. 50 (6), 1068 (2005).

    Article  ADS  Google Scholar 

  22. R. H. Blessing, Cryst. Rev. 1, 3 (1987).

    Article  Google Scholar 

  23. R. H. Blessing, J. Appl. Crystallogr. 30, 421 (1997).

    Article  Google Scholar 

  24. W. Härdle, Applied Nonparametric Regression (Cambridge Univ. Press, 1990).

    Book  MATH  Google Scholar 

  25. S. C. Abrahams and E. T. Keve, Acta Crystallogr. A 27, 157 (1971).

    Article  ADS  Google Scholar 

  26. M. Renninger, Z. Phys. 106, 141 (1937).

    Article  ADS  Google Scholar 

  27. R. M. Moon and C. G. Shull, Acta Crystallogr. 17, 805 (1964).

    Article  Google Scholar 

  28. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010).

    Article  Google Scholar 

  29. J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 9, 7541 (1997).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Federal Agency for Scientific Organizations (contract no. 007-ГЗ/Ч3363/26) in the part of the development of algorithms and programming. Study of dodecaboride crystals and diffractometer calibration were supported by the Russian Foundation for Basic Research, project nos. 16-02-00171 and 17-53-45107, respectively. Some part of experimental data were measured using equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudka, A.P. ASTRA 4.0 Program: Data Reduction for Obtaining Structure Results of Extreme Accuracy. Crystallogr. Rep. 63, 1051–1056 (2018). https://doi.org/10.1134/S1063774518050085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518050085

Keywords

Navigation