Skip to main content
Log in

Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The instrumental realization of neuromorphic systems may form the basis of a radically new social and economic setup, redistributing roles between humans and complex technical aggregates. The basic elements of any neuromorphic system are neurons and synapses. New memristive elements based on both organic (polymer) and inorganic materials have been formed, and the possibilities of instrumental implementation of very simple neuromorphic systems with different architectures on the basis of these elements have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, IEEE Trans. Biomed. Circuits Syst. 6 (3), 246 (2012).

    Article  Google Scholar 

  2. J. Seo, B. Brezzo, Y. Liu, et al., Proc. IEEE Custom Integrated Circuits Conf. (2011), p. 1.

    Google Scholar 

  3. G. Indiveri, B. Linares-Barranco, T. J. Hamilton, et al., Front. Neurosci. 5, 73 (2011).

    Google Scholar 

  4. J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).

    Article  ADS  Google Scholar 

  5. Y. V. Pershin and Ventra. M. Di, Adv. Phys. 60, 145 (2011).

    Article  ADS  Google Scholar 

  6. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).

    Article  ADS  Google Scholar 

  7. M. Hamaguchi, K. Aoyama, S. Asanuma, et al., Appl. Phys. Lett. 88, 142508 (2006).

    Article  ADS  Google Scholar 

  8. S. U. Sharath, J. Kurian, P. Komissinskiy, et al., Appl. Phys. Lett. 105, 073505 (2014).

    Article  ADS  Google Scholar 

  9. A. N. Mikhaylov, A. I. Belov, D. V. Guseinov, et al., Mater. Sci. Eng. B 194, 48 (2015).

    Article  Google Scholar 

  10. Y. H. Wang, K. H. Zhao, X. L. Shi, et al., Appl. Phys. Lett. 103, 031601 (2013).

    Article  ADS  Google Scholar 

  11. V. Erokhin, T. Berzina, and M. P. Fontana, J. Appl. Phys. 97, 064501 (2005).

    Article  ADS  Google Scholar 

  12. B. C. Das, R. G. Pill, Y. Wu, and R. L. McCreery, ACS Appl. Mater. Interfaces 5 (21), 11052 (2013).

    Article  Google Scholar 

  13. Z. Ma, C. Wu, D. U. Lee, et al., Org. Electron. 28, 20 (2016).

    Article  Google Scholar 

  14. J. J. Yang, J. Borghetti, D. Murphy, et al., Adv. Mater. 21, 3754 (2009).

    Article  Google Scholar 

  15. R. Dong, D. S. Lee, M. B. Pyun, et al., Appl. Phys. A 93, 409 (2008).

    Article  ADS  Google Scholar 

  16. Y. Wang, X. Yan, and R. Dong, Org. Electron. 15, 3476 (2014).

    Article  Google Scholar 

  17. F. Alibart, E. Zamanidoost, and D. B. Strukov, Nat. Commun. 4, 2072 (2013).

    Article  ADS  Google Scholar 

  18. V. A. Demin, V. V. Erokhin, A. V. Emelyanov, et al., Org. Electron. 25, 16 (2015).

    Article  Google Scholar 

  19. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, et al., Nature 521, 61 (2015).

    Article  ADS  Google Scholar 

  20. Sh. Choi, P. Sheridan, and W. D. Lu, Sci. Rep. 5, 10492 (2015).

    Article  ADS  Google Scholar 

  21. L. Wang, M. Duan, and S. Duan, Math. Probl. Eng. 2013, 625790 (2013).

    MathSciNet  Google Scholar 

  22. H. S. P. Wong, L. Heng-Yuan, and Y. Shimeng, Proc. IEEE 100 (6), 1951 (2012).

    Article  Google Scholar 

  23. H. Akinaga and H. Shima, Proc. IEEE 98 (12), 2237 (2010).

    Article  Google Scholar 

  24. T. Prodromakis, K. Michelakisy, and C. Toumazou, Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 1520 (2010).

    Google Scholar 

  25. E. M. Gale, A. Adamatzky, and B. Costello de Lacy, RSC Younger Members Symposium (2012).

    Google Scholar 

  26. B. J. Choi, D. S. Jeong, and S. K. Kim, J. Appl. Phys. 98, 033715 (2005).

    Article  ADS  Google Scholar 

  27. K. J. Yoon, M. H. Lee, and G. H. Kim, Nanotechnology 23 (18), 185202 (2012).

    Article  ADS  Google Scholar 

  28. L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, Appl. Phys. A 78, 263 (2004).

    Article  ADS  Google Scholar 

  29. X. Liu, J. Yin, and Z. G. Liu, Appl. Surf. Sci. 174, 35 (2001).

    Article  ADS  Google Scholar 

  30. T. Berzina, A. Smerieri, M. Bernabò, et al., J. Appl. Phys. 105, 124515 (2009).

    Article  ADS  Google Scholar 

  31. T. Berzina, S. Erokhina, P. Camorani, et al., ACS Appl. Mater. Interfaces 1, 2115 (2009).

    Article  Google Scholar 

  32. Z. Bi and Ch. Zhou, Front Comput. Neurosci. 10, 14 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Demin.

Additional information

Original Russian Text © V.A. Demin, A.V. Emelyanov, D.A. Lapkin, V.V. Erokhin, P.K. Kashkarov, M.V. Kovalchuk, 2016, published in Kristallografiya, 2016, Vol. 61, No. 6, pp. 958–968.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, V.A., Emelyanov, A.V., Lapkin, D.A. et al. Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies. Crystallogr. Rep. 61, 992–1001 (2016). https://doi.org/10.1134/S1063774516060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516060067

Navigation