Skip to main content
Log in

Microstructure of the Al-La-Ni-Fe system

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al85Ni7Fe4La4 and Al85Ni9Fe2La4 alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al4La (Al11La3) particles, these alloys contain a ternary phase Al3Ni1 − x Fe x (sp. gr. Pnma) isostructural to the Al3Ni phase and a quaternary phase Al8Fe2 − x Ni x La isostructural to the Al8Fe2Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al3Ni1 − x Fe x and Al8Fe2 − x Ni x La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al3Ni1 − x Fe x and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al8Fe2 − x Ni x La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al8Fe2 − x Ni x La particles contain inclusions in the form of Al3Fe δ layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn J. Appl. Phys. 27, 280 (1988).

    Article  ADS  Google Scholar 

  2. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn J. Appl. Phys. 27, 479 (1988).

    Article  ADS  Google Scholar 

  3. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn J. Appl. Phys. 27, 736 (1988).

    Article  ADS  Google Scholar 

  4. Y. He, J. Poons, and G. J. Shiflet, Science 241, 1640 (1988).

    Article  ADS  Google Scholar 

  5. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  6. N. D. Bakhteeva, E. V. Todorova, N. N. Kolobylina, et al., Metally, No. 2, 55 (2013).

    Google Scholar 

  7. A. Inoue and A. Takeuchi, Mater. Sci. Eng. A 375–377, 16 (2004).

    Article  Google Scholar 

  8. R. Li, W.-M. Wang, H.-J. Ma, et al., Nonferrous Met. Soc. China 21, 80 (2011).

    Article  Google Scholar 

  9. A. L. Vasiliev, M. Aindow, M. J. Blackburn, and T. J. Watson, Intermetallics 12(4), 349 (2004).

    Article  Google Scholar 

  10. V. Raghavan and J. Phase, Equilibria 22, 566 (2001).

    Article  Google Scholar 

  11. V. Raghavan and J. Phase, Equilibria 27, 392 (2006).

    Google Scholar 

  12. I. Chumak, K. W. Richter, and H. Ipser, Intermetallics 15, 1416 (2007).

    Article  Google Scholar 

  13. V. M. T. Thiede, T. Ebel, and W. Jeitschko, J. Mater. Chem. 8(1), 125 (1998).

    Article  Google Scholar 

  14. J. S. Kim, O. T. H. Hguyen, P. P. Choi, et al., Chem. Sustainable Dev. 15, 175 (2007).

    Google Scholar 

  15. P. P. Choi, J. S. Kim, O. T. H. Nguyen, et al., Mater. Sci. Eng. 449, 1119 (2007).

    Article  Google Scholar 

  16. W. Kraus and G. Nolzeb, J. Appl. Crystallogr. 29(3), 301 (1996).

    Article  Google Scholar 

  17. I. I. Zalutskii and P. I. Kripyakevich, Dopovidi Akad. Nauk Ukrains’koi RSR, A: Fiz.-Tekh. Mat. Nauki 362 (1967).

    Google Scholar 

  18. A. H. Gomes de Mesquita and K. H. J. Buschow, Acta Crystallogr. 22, 497 (1967).

    Article  Google Scholar 

  19. A. J. Bradley and A. Taylor, Philos. Mag. 23, 1049 (1937).

    Article  Google Scholar 

  20. A. L. Vasiliev, M. Aindow, M. J. Blackburn, and T. J. Watson, Scr. Mater. 52, 699 (2005).

    Article  Google Scholar 

  21. N. J. Magdefrau, A. L. Vasiliev, M. Aindow, et al., Scr. Mater. 51, 485 (2004).

    Article  Google Scholar 

  22. M. B. Manyako, I. N. Stets, I. V. Kivach, et al., Dopovidi Akad. Nauk Ukrains’koi RSR, B: Geol. Khim. Biol. Nauki 39 (1983).

    Google Scholar 

  23. K. Schubert, U. Roesler, M. Kluge, et al., Naturwissenschaften 40(16), 437 (1953).

    ADS  Google Scholar 

  24. U. Burkhardt, Yu. Grin, N. M. Ellner, and K. Peters, Acta Crystallogr. B 50, 313 (1994).

    Article  Google Scholar 

  25. P. J. Black, Acta Crystallogr. 8, 43 (1955).

    Article  Google Scholar 

  26. J. Grin, U. Burkhardt, M. Ellner, and K. Peters, Z. Kristallogr. 209, 479 (1994).

    Article  Google Scholar 

  27. A. Vasiliev, M. Aindow, M. J. Blackburn, and T. J. Watson, Intermetallics 12(4), 349 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vasil’ev.

Additional information

Original Russian Text © A.L. Vasil’ev, A.G. Ivanova, N.D. Bakhteeva, N.N. Kolobylina, A.S. Orekhov, M.Yu. Presnyakov, E.V. Todorova, 2015, published in Kristallografiya, 2015, Vol. 60, No. 1, pp. 28–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.L., Ivanova, A.G., Bakhteeva, N.D. et al. Microstructure of the Al-La-Ni-Fe system. Crystallogr. Rep. 60, 23–29 (2015). https://doi.org/10.1134/S1063774514060297

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514060297

Keywords

Navigation