Skip to main content
Log in

Analytical study of a four-body configuration in exoplanet scenarios

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Lately, more and more exoplanets are being discovered and the number is expected to increase thanks to the excellent programs dedicated to this task. Thus it is important to study the dynamical behavior of planetary systems. Among all the problems that may be considered, we are interested in four-body planetary systems. In this article, we first examine the possible cases in four-body planetary systems including satellites, in both single and multiple stars. Step decomposition is a methodology explained by A. Abad and J.A. Docobo to deal with n-body problems with hierarchy. The use of this technique permits the reduction of the different cases to five configurations. The analytical integration of one of these cases, a double star with a planet and a satellite orbiting one of the components of the stellar system, is the objective. First the Hamiltonian of the problem is given and then we formulate it in terms of three small parameters which can be reduced to two in this case. After that, using Hori’s biparametric method, the dependence on the angular variables is removed, thereby allowing the integration of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Abad, Publicaciones del Seminario Matemático García de Galdeano (Universidad de Zaragoza, Spain, 1984).

    Google Scholar 

  2. A. J. Abad and J. A. Docobo, Cel. Mech. 41, 333 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. J. Abad and J. Ribera, Publicaciones del Seminario Matem ático García de Galdeano (Universidad de Zaragoza, Spain, 1984).

    Google Scholar 

  4. M. Andrade, Astron. J. 136, 1030 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Beuermann et al., Astron. Astrophys. 521, L60 (2010).

    Article  ADS  Google Scholar 

  6. S. Chatterjee et al., Astrophys. J. 686, 580 (2008).

    Article  ADS  Google Scholar 

  7. S. Desidera and M. Barbieri, Astron. Astrophys. 462, 345 (2007).

    Article  ADS  Google Scholar 

  8. R. Dvorak, Mitteilungen. Astron. Gesellsch. 48, 87 (1980).

    ADS  Google Scholar 

  9. R. Dvorak, Oesterreich. Akad. Wissensch., Mathem.-Naturwissensch. Klasse, Sitzungsberichte, Abt. 2 191, 423 (1982).

    MATH  MathSciNet  Google Scholar 

  10. R. Dvorak, Cel. Mech. 34, 369 (1984).

    Article  ADS  MATH  Google Scholar 

  11. R. Dvorak, C. Froeschle, and Ch. Froeschle, Astron. Astrophys. 226, 335 (1989).

    ADS  Google Scholar 

  12. R. Dvorak, C. Froeschle, and Ch. Froeschle, Bull. Am. Astron. Soc. 18, 842 (1986).

    ADS  Google Scholar 

  13. R. Dvorak et al., Astrobiol. 10, 33 (2010).

    Article  ADS  Google Scholar 

  14. R. Dvorak and Á. Süli, Cel. Mech. Dyn. Astr. 83, 77 (2002).

    Article  ADS  MATH  Google Scholar 

  15. S. Ferraz-Mello, C. Beaugé, and T. A. Michtchenko,, in Proceedings of the Colloquium on 10th Anniversary of 51 Peg-b: Status of and Prospects for Iot Jupiter Studies, Observatoire de Haute Provence, France, August 22–25, 2005, Ed. by L. Arnold, F. Bouchy and C. Moutou (Frontier Group, Paris, 2006), p. 295.

  16. S. Ferraz-Mello and T. A. Michtchenko, Rev. Mex. Astron. Astrophys. (Conf.) 14, 7 (2002).

    ADS  Google Scholar 

  17. B. Funk et al., Cel. Mech. Dyn. Astr. 90, 43 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. B. Funk et al., Mon. Not. R. Astron. Soc. 410, 455 (2011).

    Article  ADS  Google Scholar 

  19. N. Haghighipour, R. Dvorak, and E. Pilat-Lohinger, Astrophys. Space Sci. Lib. 366, 285 (2010).

    Article  ADS  Google Scholar 

  20. B.M. S. Hansen, Astrophys. J. 723, 285 (2010).

    Article  ADS  Google Scholar 

  21. R. S. Harrington, Astron. J. 82, 753 (1977).

    Article  ADS  Google Scholar 

  22. R. S. Harrington, Bull. Am. Astron. Soc. 9, 435 (1977).

    ADS  Google Scholar 

  23. R. S. Harrington and B. J. Harrington, Mercury 7, 34 (1978).

    ADS  MathSciNet  Google Scholar 

  24. R. Heller, J. Leconte, and R. Barnes, Astron. Astrophys. 528, A27 (2011).

    Article  ADS  Google Scholar 

  25. M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).

    Article  ADS  Google Scholar 

  26. G. Hori, Publ. Astron. Soc. Jpn. 18, 287 (1966).

    ADS  Google Scholar 

  27. L. Kiseleva-Eggleton et al., Bull. Am. Astron. Soc. 34, 1144 (2002).

    ADS  Google Scholar 

  28. R. Kita, F. Rasio, and G. Takeda, Astrobiol. 10, 733 (2010).

    Article  ADS  Google Scholar 

  29. R. K. Kopparapu and R. Barnes, Astrophys. J. 716, 1336 (2010).

    Article  ADS  Google Scholar 

  30. T. A. Michtchenko, C. Beaugé, and S. Ferraz-Mello,, Cel. Mech. Dyn. Astr. 94, 411 (2006).

    Article  ADS  MATH  Google Scholar 

  31. M. A. C. Perryman and T. Schulze-Hartung, Astron. Astrophys. 525, A65 (2011).

    Article  ADS  Google Scholar 

  32. E. Pilat-Lohinger and R. Dvorak, Cel. Mech. Dyn. Astr. 82, 143 (2002).

    Article  ADS  MATH  Google Scholar 

  33. E. Pilat-Lohinger, B. Funk, and R. Dvorak, Astron. Astrophys. 400, 1085 (2003).

    Article  ADS  Google Scholar 

  34. G. Rabl and R. Dvorak, Astron. Astrophys. 191, 385 (1988).

    ADS  Google Scholar 

  35. C. Scharf and K. Menou, Astrophys. J. Lett. 693, L113 (2009).

    Article  ADS  Google Scholar 

  36. J. Schneider et al., Astron. Astrophys. 532, A79 (2011).

    Article  ADS  Google Scholar 

  37. R. Schwarz et al., Astron. Astrophys. 474, 1023 (2007).

    Article  ADS  Google Scholar 

  38. V. Szebehely, Zeitschr. Angew. Math. Phys. 30, 364 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. V. Szebehely, Cel. Mech. 22, 7 (1980).

    Article  ADS  MATH  Google Scholar 

  40. V. Szebehely and R. McKenzie, Astron. J. 82, 79 (1977).

    Article  ADS  Google Scholar 

  41. A. Tokovinin, in Highlights of Astronomy 13, 25th General Assembly of the IAU-2003, Sydney, Australia, July 13–26, 2003, Ed. by O. Engvold (Astronomical Soc. Pacific, 2005), p. 992.

  42. A. L. Whipple and V. Szebehely, Cel. Mech. 32, 137 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Campo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campo, P.P., Docobo, J.A. Analytical study of a four-body configuration in exoplanet scenarios. Astron. Lett. 40, 737–748 (2014). https://doi.org/10.1134/S1063773714110012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714110012

Keywords

Navigation