Skip to main content
Log in

Dynamics of Magnetized Accretion Disks of Young Stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We investigate the dynamics of the accretion disks of young stars with fossil large-scale magnetic field. The author’s magnetohydrodynamic (MHD) model of the accretion disks is generalized to take into account the dynamical influence of the magnetic field on gas rotation speed and vertical structure of the disks. With the help of the developed MHD model, the structure of an accretion disk of a solar mass T Tauri star is simulated for different accretion rates \(\dot {M}\) and dust grain sizes \({{a}_{d}}\). The simulations of the radial structure of the disk show that the magnetic field in the disk is kinematic, and the electromagnetic force does not affect the rotation speed of the gas for typical values \(\dot {M} = {{10}^{{ - 8}}}\) \({{M}_{ \odot }}\)/yr and \({{a}_{d}} = 0.1\) µm. In the case of large dust grains, \({{a}_{d}} \geqslant 1\) mm, the magnetic field is frozen into the gas and a dynamically strong magnetic field is generated at radial distances from the star \(r \gtrsim 30\) AU, the tensions of which slow down the rotation speed by \( \lesssim {\kern 1pt} 1.5\)% of the Keplerian velocity. This effect is comparable to the contribution of the radial gradient of gas pressure and can lead to the increase in the radial drift velocity of dust grains in the accretion disks. In the case of high accretion rate, \(\dot {M} \geqslant \) 10–7 \({{M}_{ \odot }}\)/yr, the magnetic field is also dynamically strong in the inner region of the disk, \(r < \) 0.2 AU. The simulations of the vertical structure of the disk show that, depending on the conditions on the surface of the disk, the vertical gradient of magnetic pressure can lead to both decrease and increase in the characteristic thickness of the disk as compared to the hydrostatic one by 5–20%. The change in the thickness of the disk occurs outside the region of low ionization fraction and effective magnetic diffusion (“dead” zone), which extends from \(r = 0.3\) to 20 AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011).

    Article  ADS  Google Scholar 

  2. A. Boccaletti, E. di Folco, E. Pantin, A. Dutrey, et al., Astron. Astrophys. 637, 5 (2020).

    Article  Google Scholar 

  3. S. Nayakshin, T. Tsukagoshi, C. Hall, A. Vazan, et al., Mon. Not. R. Astron. Soc. 495, 285 (2020).

    ADS  Google Scholar 

  4. C. L. Brogan, L. M. Pérez, T. R. Hunter, W. R. F. Dent, et al., Astrophys. J. Suppl. 808, L3 (2015).

    Article  ADS  Google Scholar 

  5. S. M. Andrews, J. Huang, L. M. Pérez, A. Isella, et al., Astrophys. J. Lett. 869, L41 (2018).

    Article  ADS  Google Scholar 

  6. C. Pinte, F. Ménard, G. Duchêne, T. Hill, et al., Astron. Astrophys. 609, A47 (2018).

    Article  Google Scholar 

  7. R. Teague, J. Bae, Y. Aikawa, S. M. Andrews, et al., Astrophys. J. Suppl. 257, 18 (2021).

    Article  Google Scholar 

  8. M. Tamura and S. Sato, Astron. J. 98, 1368 (1989).

    Article  ADS  Google Scholar 

  9. D. Li, C. M. Telesco, H. Zhang, C. M. Wright, E. Pantin, P. J. Barnes, and C. Packham, Mon. Not. R. Astron. Soc. 473, 1427 (2018).

    Article  ADS  Google Scholar 

  10. A. Frank, T. P. Ray, S. Cabrit, P. Hartigan, et al., in Jets and Outflows from Star to Cloud: Observations Confront Theory, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. Arizona Press, Tucson, 2019), Chap. 2, p. 451.

  11. J.-F. Donati, F. Paletou, J. Bouvier, and J. Ferreira, Nature (London, U.K.) 438, 466 (2005).

    Article  ADS  Google Scholar 

  12. S. A. Khaibrakhmanov, A. E. Dudorov, A. I. Vasyunin, and M. Yu. Kiskin, Bull. Lebedev Phys. Inst. 48, 312 (2021).

    Article  ADS  Google Scholar 

  13. R. E. Harrison, L. W. Looney, I. W. Stephens, Zhi-Yun Li, et al., Astrophys. J. 908, 141 (2021).

    Article  ADS  Google Scholar 

  14. W. H. T. Vlemmings, B. Lankhaar, P. Cazzoletti, C. Ceccobello, et al., Astron. Astrophys. 624, 7 (2019).

    Article  Google Scholar 

  15. R. R. Fu, B. P. Weiss, E. A. Lima, R. J. Harrison, Xue-Ning Bai, et al., Science (Washington, DC, U. S.) 346 (6213), 1089 (2014).

    Article  ADS  Google Scholar 

  16. E. H. Levy, Nature (London, U.K.) 276, 481 (1978).

    Article  ADS  Google Scholar 

  17. A. E. Dudorov, Astron. Rep. 39, 790 (1995).

    ADS  Google Scholar 

  18. A. E. Dudorov and S. A. Khaibrakhmanov, Adv. Space Res. 55, 843 (2015).

    Article  ADS  Google Scholar 

  19. D. Moss, D. D. Sokoloff, and V. Suleimanov, Astron. Astrophys. 588, A18 (2016).

    Article  ADS  Google Scholar 

  20. D. D. Sokoloff, Astron. Rep. 65, 1054 (2021).

    Article  ADS  Google Scholar 

  21. V. Agapitou and J. C. B. Papaloizou, Astrophys. Lett. Commun. 34, 363 (1996).

    ADS  Google Scholar 

  22. S. H. Lubow, J. C. B. Papaloizou, and J. E. Pringle, Mon. Not. R. Astron. Soc. 267, 235 (1994).

    Article  ADS  Google Scholar 

  23. M. Reyes-Ruiz and T. F. Stepinski, Astrophys. J. 459, 653 (1996).

    Article  ADS  Google Scholar 

  24. F. Shu, D. Galli, S. Lizano, A. E. Glassgold, and P. H. Diamond, Astrophys. J. 665, 535 (2007).

    Article  ADS  Google Scholar 

  25. R. V. E. Lovelace, D. M. Rothstein, and G. S. Bisnovatyi-Kogan, Astrophys. J. 701, 885 (2009).

    Article  ADS  Google Scholar 

  26. J. Guilet and G. I. Ogilvie, Mon. Not. R. Astron. Soc. 441, 852 (2014).

    Article  ADS  Google Scholar 

  27. S. Okuzumi, T. Takeuchi, and T. Muto, Astrophys. J. 785, 127 (2014).

    Article  ADS  Google Scholar 

  28. S. Lizano, C. Tapia, Y. Boehler, and P. D’Alessio, Astrophys. J. 817, 35 (2016).

    Article  ADS  Google Scholar 

  29. J. B. Simon, Xue-Ning Bai, P. J. Armitage, J. M. Stone, and K. Beckwith, Astrophys. J. 775, 73 (2013).

    Article  ADS  Google Scholar 

  30. G. Lesur, M. W. Kunz, and S. Fromang, Astron. Astrophys. 566, A56 (2014).

    Article  ADS  Google Scholar 

  31. O. Gressel, N. J. Turner, R. P. Nelson, and C. P. McNally, Astrophys. J. 801, 84 (2015).

    Article  ADS  Google Scholar 

  32. W. Bethune, G. Lesur, and J. Ferreira, Astron. Astrophys. 600, A75 (2017).

    Article  ADS  Google Scholar 

  33. O. Gressel, J. P. Ramsey, C. Brinch, R. P. Nelson, N. J. Turner, and S. Bruderer, Astrophys. J. 896, 126 (2020).

    Article  ADS  Google Scholar 

  34. S. Suriano, Z.-Y. Li, R. Krasnopolsky, and S. Hsien, Mon. Not. R. Astron. Soc. 477, 1239 (2018).

    Article  ADS  Google Scholar 

  35. A. Riols, G. Lesur, and F. Menard, Astron. Astrophys. 639, A95 (2020).

    Article  ADS  Google Scholar 

  36. A. E. Dudorov and S. A. Khaibrakhmanov, Vestn. Chelyab. Univ., No. 9 (300), 27 (2013).

  37. A. E. Dudorov and S. A. Khaibrakhmanov, Vestn. Chelyab. Univ., No. 9 (300), 40 (2013).

  38. A. E. Dudorov and S. A. Khaibrakhmanov, Astrophys. Space Sci. 351, 103 (2014).

    Article  ADS  Google Scholar 

  39. S. A. Khaibrakhmanov, A. E. Dudorov, S. Yu. Parfenov, and A. M. Sobolev, Mon. Not. R. Astron. Soc. 464, 586 (2017).

    Article  ADS  Google Scholar 

  40. N. I. Shakura, Sov. Astron. 16, 756 (1972).

    ADS  Google Scholar 

  41. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  42. S. A. Khaibrakhmanov and A. E. Dudorov, Magnetohydrodynamics 55, 65 (2019).

    Article  Google Scholar 

  43. S. A. Khaibrakhmanov and A. E. Dudorov, Chelyab. Fiz.-Mat. Zh. 6, 53 (2021).

    Google Scholar 

  44. S. J. Weidenschilling, Mon. Not. R. Astron. Soc. 180, 57 (1977).

    Article  ADS  Google Scholar 

  45. A. E. Dudorov and Yu. V. Sazonov, Nauch. Inform. 63, 68 (1987).

    ADS  Google Scholar 

  46. N. I. Shakura, Accretion Flows in Astrophysics (Fizmatlit, Moscow, 2016; Springer, New York, 2018).

  47. T. Kudoh and K. Shibata, Astrophys. J. 474, 362 (1997).

    Article  ADS  Google Scholar 

  48. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    Article  ADS  Google Scholar 

  49. D. Semenov, T. Henning, C. Helling, M. Ilgner, and E. Sedlmayr, Astron. Astrophys. 410, 611 (2003).

    Article  ADS  Google Scholar 

  50. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  51. C. P. Dullemond, A. Isella, S. M. Andrews, I. Skobleva, and N. Dzyurkevich, Astron. Astrophys. 633, A137 (2020).

    Article  ADS  Google Scholar 

  52. E. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon, New York, 1979).

    Google Scholar 

  53. Yu. A. Tserkovnikov, Sov. Phys. Dokl. 5, 87 (1960).

    ADS  Google Scholar 

  54. D. W. Hughes, Geophys. Astrophys. Fluid Dyn. 32, 273 (1985).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank anonymous referee for some useful comments. S.A. Khaibrakhmanov thanks S.N. Zamozdra for useful discussion.

Funding

The work of S.A. Khaibrakhmanov in Section 4.2 was carried out with the support of the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation under grant 075-15-2020-780 (N13.1902.21.0039, contract 780-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khaibrakhmanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaibrakhmanov, S.A., Dudorov, A.E. Dynamics of Magnetized Accretion Disks of Young Stars. Astron. Rep. 66, 872–885 (2022). https://doi.org/10.1134/S1063772922100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922100079

Keywords:

Navigation