Skip to main content
Log in

Monitoring of the Blazar J0238+1636 with the RATAN-600 and RT-32 in 2014−2019

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The presented observation results of the blazar J0238+1636 were obtained in: 2014–2019 with the RATAN-600 radio telescope from the Special Astrophysical Observatory of the Russian Academy of Sciences at 2.3, 4.8, 8.2, 11.2, and 21.7 GHz; and 2015–2017 with the 32-m Zelenchuk and Badary radio telescopes of the Institute of Applied Astronomy of the Russian Academy of Sciences at 4.84 and 8.57 GHz. Two flares were detected on the long-term light curve. The time scale for variability on the rising branch of the first flare is τvar = 0.5 year, and the upper limit for the linear and angular sizes of the emitting region at 21.7 GHz are 0.3 pc and 0.05 mas, respectively. The brightness temperature is Tb ≥ 2.6 × 1013 K, and the Doppler factor is δ ≥ 3. In three sets of the source’s daily observations, which lasted up to three months each, no significant variability on the day-to-day scale was found after subtracting the long-term variability. In the RT-32 data, the intraday variability (IDV) was found at a frequency of 4.84 GHz in three out of 15 sessions and at 8.57 GHz in two out of 13 sessions. The characteristic times for variability are 4−5 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. M. Raiteri, M. Vilatta, H. D. Aller, M. F. Aller, et al., Astron. Astrophys. 377, 396 (2001).

    Article  ADS  Google Scholar 

  2. C. M. Raiteri, M. Vilatta, M. A. Ibrahimov, V. M. Larionov, et al., Astron. Astrophys. 438, 39 (2005).

    Article  ADS  Google Scholar 

  3. C. M. Raiteri, M. Vilatta, M. Kadler, M. A. Ibrahimov, et al., Astron. Astrophys. 459, 731 (2006).

    Article  ADS  Google Scholar 

  4. C. M. Raiteri, M. Vilatta, V. M. Larionov, M. F. Aller, et al., Astron. Astrophys. 480, 339 (2008).

    Article  ADS  Google Scholar 

  5. M. P. Veron-Cetty and P. Veron, Astron. Astrophys. 518, 10 (2010).

    Article  ADS  Google Scholar 

  6. H. D. Aller, M. F. Aller, G. E. Latimer, and P. E. Hodge, Astron. Astrophys. Suppl. Ser. 202, 1801 (2003).

    Google Scholar 

  7. H. Teräsranta, J. Achren, M. Hanski, J. Heikkilä, et al., Astron. Astrophys. 427, 769 (2004).

    Article  ADS  Google Scholar 

  8. C. M. Raiteri, M. Villata, M. Kadler, M. A. Ibrahimov, et al., Astron. Astrophys. 459, 731 (2006).

    Article  ADS  Google Scholar 

  9. V. A. Hagen-Thorn, V. M. Larionov, D. A. Morozova, A. A. Arkharov, E. I. Hagen-Thorn, E. S. Shablovinskaya, M. S. Prokop’eva, and V. A. Yakovleva, Astron. Rep. 62, 103 (2018).

    Article  ADS  Google Scholar 

  10. A. E. Vol’vach, M. G. Larionov, L. N. Vol’vach, A. Lähteenmäki, M. Tornikoski, M. F. Aller, H. D. Aller, and M. Sasada, Astron. Rep. 59, 145 (2015).

    Article  ADS  Google Scholar 

  11. S. Frey, L. I. Gurvits, H. D. Aller, M. F. Aller, and H. Hirabayashi, Publ. Astron. Soc. Pacif. 52, 975 (2000).

    Article  ADS  Google Scholar 

  12. A. M. Kutkin, I. N. Pashchenko, M. M. Lisakov, P. A. Voytsik, et al., Mon. Not. R. Astron. Soc. 475, 4994 (2018).

    Article  ADS  Google Scholar 

  13. A. G. Gorshkov, V. K. Konnikova, and M. G. Mingaliev, Astron. Rep. 47, 903 (2003).

    Article  ADS  Google Scholar 

  14. A. G. Gorshkov, V. K. Konnikova, and M. G. Mingaliev, Astron. Rep. 44, 161 (2000).

    Article  ADS  Google Scholar 

  15. A. G. Gorshkov, V. K. Konnikova, and M. G. Mingaliev, Astron. Rep. 54, 908 (2010).

    Article  ADS  Google Scholar 

  16. D. V. Ivanov, A. V. Ipatov, I. A. Ipatova, V. V. Mardyshkin, A. G. Mikhailov, and M. A. Kharinov, Tr. IPA RAN 12, 93 (2005).

    Google Scholar 

  17. A. G. Gorshkov, A. V. Ipatov, I. A. Ipatova, V. K. Konnikova, V. V. Mardyshkin, M. A. Kharinov, and A. G. Mikhailov, Astron. Rep. 53, 389 (2009).

    Article  ADS  Google Scholar 

  18. M. A. Kharinov and A. E. Yablokova, Tr. IPA RAN 24, 342 (2012).

    Google Scholar 

  19. D. V. Ivanov, A. V. Ipatov, I. A. Ipatova, V. V. Mardyshkin, A. G. Mikhailov, and M. A. Kharinov, Tr. IPA RAN 24, 93 (2012).

    Google Scholar 

  20. G. A. Seielstad, T. J. Pearson, and A. C. S. Readhead, Publ. Astron. Soc. Pacif. 95, 842 (1983).

    Article  ADS  Google Scholar 

  21. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. SAO 58, 118 (2005).

    Google Scholar 

  22. E. Valtaoja, A. Lähteenmäki, H. Teräsranta, and M. Lainela, Astrophys. J. Suppl. 120, 95 (1999).

    Article  ADS  Google Scholar 

  23. A. G. Gorshkov, A. V. Ipatov, I. A. Ipatova, V. K. Konnikova, V. V. Mardyshkin, M. G. Mingaliev, and M. A. Kharinov, Astron. Rep. 62, 183 (2018).

    Article  ADS  Google Scholar 

  24. V. A. Hagen-Thorn, V. M. Larionov, S. G. Jorstad, A. A. Arkharov, E. I. Hagen-Thorn, N. V. Efimova, L. V. Larionova, and A. P. Marscher, Astrophys. J. 672, 40 (2008).

  25. A. Kraus, A. Quirrenbach, A. P. Lobanov, T. P. Krichbaum, et al., Astron. Astrophys. 344, 807 (1999).

    ADS  Google Scholar 

  26. A. G. Gorshkov, A. V. Ipatov, I. A. Ipatova, V. K. Konnikova, V. V. Mardyshkin, M. G. Mingaliev, M. A. Kharinov, and A. A. Evstigneev, Astron. Lett. 42, 506 (2016).

    Article  ADS  Google Scholar 

  27. V. K. Konnikova, M. A. Kharinov, A. V. Ipatov, I. A. Ipatova, V. V. Mardyshkin, and M. G. Mingaliev, Astron. Rep. 63, 316 (2019).

    Article  ADS  Google Scholar 

  28. J. M. MacLeod, B. H. Andrew, and G. A. Harvey, Nature (London, U.K.) 260, 751 (1976).

    Article  ADS  Google Scholar 

  29. A. C. Gupta, J. H. Fan, J. M. Bai, and S. J. Wagner, Astron. J. 135, 1384 (2008).

    Article  ADS  Google Scholar 

  30. J. Roland, S. Britzen, A. Witzel, and J. A. Zensus, Astron. Astrophys. 496, 645 (2009).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed by using equipment from the core facility center of the “Kvazar−KVO” complex of IAA RAS.

Funding

The study of IDV and the RATAN-600 observations were supported by the Ministry of Science and Higher Education of Russia (GK 14.518.11.7054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kharinov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharinov, M.A., Konnikova, V.K., Ipatov, A.V. et al. Monitoring of the Blazar J0238+1636 with the RATAN-600 and RT-32 in 2014−2019. Astron. Rep. 64, 350–362 (2020). https://doi.org/10.1134/S1063772920050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920050029

Navigation