Skip to main content
Log in

Study of Rapid Variability of the Blazar OJ 287 in the Radio and Optical Ranges

  • Published:
Astrophysics Aims and scope

The extragalactic radio source OJ 287 is one of the most studied blazars. A huge amount of data has been accumulated on it (for more than 40 years in the radio range and more than 100 in the optical). Studies of the rapid variability in the radio flux and stellar magnitude of this object with characteristic times ranging from a few hours to several days are of interest in connection with the possible presence in this radio source of a system of binary black holes that includes a central object and its satellite. Here we present the results of searches for and studies of the intraday variability (IDV) and interday variability of the radio source OJ 287 (March-May 2019) at frequencies of 6.1 and 6.7 GHz on the telescopes at VIRAC (Ventspils International Radioastronomy Center, Latvia) compared with optical V, R, and I band variability (April-May 2019). Optical light curves were obtained on the 1.2-m Schmidt system telescope at the Baldone Astronomical Observatory, Latvia, on the 1-m VNT telescope at the Vihorlat Astronomical Observatory, Slovakia, and on the AZT-3 telescope at the Mayaki Observational Station of the I. I. Mechnikov Odessa National University, Ukraine. Similarities are found in the long-term quasiperiods in the radio (15, 42 days) and optical (13, 36-37 days) ranges. The minimum characteristic time for changes in the flux density was 1.4 hours and 0.6 hours at frequencies of 6.7 and 6.1 GHz with fundamental quasiperiods of about 5 and 2-3 hours during different observation sessions. The results obtained here are compared with those of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tang, H. J. Zhang, and Q. Pang, Astron. Astrophys. 35, 301 (2014).

    Article  Google Scholar 

  2. M. Valtonen and S. Ciprini, MemoriedellaSocietaAstronomica Italiana 83, 219 (2012).

  3. J. H. Fan, G. Z. Xie, E. Pecontal, et al., Astrophys. J. 507, 173 (1998).

    Article  ADS  Google Scholar 

  4. X. Liu, P. P. Yang, J. Liu, et al., Mon. Not. Roy. Astron. Soc. 469, 2457 (2017).

    Article  ADS  Google Scholar 

  5. W. Zeng, Q. J. Zhao, Ze-Jun Jiang, et al., Galaxies 5, 85 (2017).

  6. P. A. Hughes, H. D. Aller, M. F. Aller, et al., Astrophys. J. 503, 662 (1998).

    Article  ADS  Google Scholar 

  7. T. Jie, Scientia Sinica Physica, Mechanica&Astronomica 44, 771 (2014).

    Google Scholar 

  8. M. Bleiders, A. Orbidans, and Vl. Bezrukovs, Latvian Journal of Physics and Technical Sciences 54, 6 (2017).

  9. J. T. Van der Plas, Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article  Google Scholar 

  10. W. H. Press and G. B. Rybicki, Astrophys. J. 338, 277 (1989).

    Article  ADS  Google Scholar 

  11. P. Kataria and R. Mehra, International Journal of Science, Engineering and Technology Research (IJSETR) 2, 1691 (2013).

  12. I. A. Ahmad and A. R. Mugdadi, Journal of Nonparametric Statistics 15, 273 (2003).

    Article  MathSciNet  Google Scholar 

  13. T. J. Cavicchi, IEE Proceedings F-Radar and Signal Processing, 139 (207 (1992).

  14. D. Ventzas and N. Petrellis, Peak searching algorithms and applications. The IASTED International Conference on Signal and Image Processing and Applications.SIPA 2011, June 22-24 (2011), Crete, Greece.

  15. M. K. Transtrum and J. P. Sethna, arXiv:1201. 5885v1 [physics. data-an] (2012).

  16. D. Boyd, JAAVSO 40, 990 (2012).

    ADS  Google Scholar 

  17. M. Fiorucci and G. Tosti, Astron. Astrophys. Suppl. Ser. 116, 403 (1996).

    Article  ADS  Google Scholar 

  18. N. A. Sadovnikova and R. A. Smoilova, Analysis of Time Series and Prediction. Vol. 3: A Text and Methodological Set [in Russian], Izd. Tsentr. EAOI, Moscow (2009), p. 264.

  19. N. Visvanathan and J. L. Elliot, Astrophys. J. 179, 721 (1973).

    Article  ADS  Google Scholar 

  20. L. Carrasco, D. Dultzin-Hacyan, and I. Cruz-Gonzalez, Nature, 314, 146 (1985).

    Article  ADS  Google Scholar 

  21. W. M. Kinzel, R. L. Dickman, and C. R. Predmore, Nature, 331, 48 (1988).

    Article  ADS  Google Scholar 

  22. E. Valtaoja, H. Lehto, P. Teerikorpi, et al., Nature 314, 148 (1985).

    Article  ADS  Google Scholar 

  23. J. W. Dreher, D. H. Roberts, and J. Lehar, Nature 320, 239 (1986).

    Article  ADS  Google Scholar 

  24. Wu. Jianghua, Xu. Zhou, Xue-Bing Wu, et al., Astron. J. 132, 1256 (2006).

  25. Y. Liu, J. H. Fan, H. G. Wang, et al., Proceedings of the International Astronomical Union 8, 269 (2013).

    Article  ADS  Google Scholar 

  26. P. Pihajoki, M. Valtonen, and S. Ciprini, Mon. Not. Roy. Astron. Soc. 434, 3122 (2013).

    Article  ADS  Google Scholar 

  27. A. C. Gupta, P. J. Wiita, H. Gaur, et al., Astron. J. 157, 95 (2019).

    Article  ADS  Google Scholar 

  28. A. L. Sukharev, M. I. Ryabov, and G. I. Donskikh, Astrophysics 59, 213 (2016).

    Article  ADS  Google Scholar 

  29. S. N. Udovichenko, Odessa Astron. Publ. 25, 32 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sukharev.

Additional information

Translated from Astrofizika, Vol. 63, No. 1, pp. 41-55 (February 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharev, A., Ryabov, M., Bezrukovs, V. et al. Study of Rapid Variability of the Blazar OJ 287 in the Radio and Optical Ranges. Astrophysics 63, 32–44 (2020). https://doi.org/10.1007/s10511-020-09611-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09611-w

Keywords

Navigation