Skip to main content
Log in

Influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of theoretical studies of the influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system are presented. An expression for the precession angle due to such additions is obtained. It is shown that, with certain relationships between the parameters in the Yukawa potential, their contribution to the perihelion precession of the trans-Neptunian objects 2000 OO67, 2006 SQ372, 2009 FW54, 2013 BL76, and 2003 VB12 is of order 0.01″ over the period, exceeding the contribution of general relativistic terms by at least an order of magnitude. The fundamental possibility of perihelion precession of these trans-Neptunian objects in the retrograde direction is established. Observational data on the precession of planets in the solar system are used to place constraints on the parameters of the added Yukawa potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Turyshev, Phys. Usp. 52, 1 (2009).

    Article  ADS  Google Scholar 

  2. J. R. Brownstein, arXiv:0908.0040 (2009).

  3. S. O. Alekseev, E. A. Pamyatnykh, A. V. Ursulov, D. A. Tret’yakova, and K. A. Rannu, Introduction to the General Theory of Relativity, and Its Current Development and Applications (Ural. Univ., Ekaterinburg, 2015) [in Russian].

    Google Scholar 

  4. A. Stabile and S. Capozzielo, Phys. Rev. D 87, 064002 (2013).

    Article  ADS  Google Scholar 

  5. T. P. Sotiriou, Rev. Mod. Phys. 82, 451 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. L. Cervantes-Cota, M. A. Rodriguez-Meza, R. Gabbasov, and J. Klapp, Rev. Mex. Fis. 53, S22 (2007).

    Google Scholar 

  7. J. W. Moffat, J. Cosmol. Astropart. Phys. 0603, 004 (2006).

  8. J. W. Moffat, Int. J. Mod. Phys. D16, 2075 (2008).

    ADS  Google Scholar 

  9. B. Jain, V. Vikram, and J. Sakstein, arXiv:1204.6044 (2012).

  10. T. Cliftona, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Rand all, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006).

    Article  ADS  Google Scholar 

  12. L. Iorio, J. High Energy Phys. 10, 041 (2007).

    Article  ADS  Google Scholar 

  13. C. P. L. Berry and J. R. Gair, Phys. Rev. D 83, 104022 (2011).

    Article  ADS  Google Scholar 

  14. B. Lamine, J.-M. Courty, S. Reynaud, and M.-T. Jaekel, arXiv:1105.6269 (2011).

  15. L. Iorio, J. High Energy Phys. 5, 73 (2012).

    Article  ADS  Google Scholar 

  16. B. Buscaino, D. DeBra, P. W. Graham, G. Gratta, and T. D. Wiser, Phys. Rev. D 92, 104048 (2015).

    Article  ADS  Google Scholar 

  17. F. F. Faria, arXiv:1604.02210 (2016).

  18. V. F. Cardone and S. Capozziello, Mon. Not. R. Astron. Soc. 414, 1301 (2011).

    Article  ADS  Google Scholar 

  19. S. O. Alexeyev, K. A. Rannu, P. I. Dyadina, B. N. Latosh, and S. G. Turyshev, J. Exp. Theor. Phys. 120, 966 (2015).

    Article  ADS  Google Scholar 

  20. S. Reynaud and M.-T. Jaekel, Int. J. Mod. Phys. A 20, 2294 (2005).

    Article  ADS  Google Scholar 

  21. L. Iorio, arXiv:0809.3563 (2008).

  22. L. Iorio, arXiv:0905.4704 (2009).

  23. Z. Berezhiani, L. Pilo, and N. Rossi, Eur. Phys. J. C 70, 305 (2010).

    Article  ADS  Google Scholar 

  24. R. H. Sanders, Astron. Astrophys. 136, L21 (1984).

    ADS  Google Scholar 

  25. H. Haghi and S. Rahvar, Int. J. Theor. Phys. 49, 1004 (2010).

    Article  Google Scholar 

  26. D. S. L. Soares, Rev. Mex. Astron. Astrofis. 28, 35 (1994).

    ADS  Google Scholar 

  27. V. Salzano, D. F. Mota, S. Capozziello, and N. R. Napolitano, Astron. Astrophys. 561, A131 (2014).

    Article  ADS  Google Scholar 

  28. N. R. Napolitano, S. Capozziello, A. J. Romanowsky, M. Capaccioli, and C. Tortora, Astrophys. J. 748, 87 (2012).

    Article  ADS  Google Scholar 

  29. I. de Martino, M. de Laurentis, F. Atrio-Barandela, and S. Capozziello, Mon. Not. R. Astron. Soc. 442, 921 (2014).

    Article  ADS  Google Scholar 

  30. C. S. S. Brandao and J. C. N. de Araujo, Gen. Rel. Grav. 42, 777 (2010).

    Article  ADS  Google Scholar 

  31. C. S. S. Brandao and J. C. N. de Araujo, Gen. Rel. Grav. 42, 623 (2010).

    Article  ADS  Google Scholar 

  32. Z. Berezhiani, F. Nesti, L. Pilo, and N. Rossi, J. High Energy Phys. 0907, 083 (2009).

    Article  ADS  Google Scholar 

  33. M. C. Martino, H. F. Stabenau, and R. K. Sheth, Phys. Rev. D 79, 084013 (2009).

    Article  ADS  Google Scholar 

  34. C. S. S. Brandao and J. C. N. de Araujo, Astrophys. J. 750, 29 (2012).

    Article  ADS  Google Scholar 

  35. I. de Martino, M. de Laurentis, and S. Capozziello, Universe 1 (2), 123 (2015).

    Article  ADS  Google Scholar 

  36. I. de Martino, M. de Laurentis, F. Atrio-Barandela, and S. Capozziello, J. Phys.: Conf. Ser. 600, 012048 (2015).

    Google Scholar 

  37. L. D. Land au and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Pergamon, New York, 1988; Fizmatlit, Moscow, 2012).

    Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2012; Pergamon, Oxford, 1975).

    Google Scholar 

  39. K. Batygin and M. E. Brown, Astron. J. 151, 22 (2016).

    Article  ADS  Google Scholar 

  40. V. S. Beskin, Gravity and Astrophysics (Fizmatlit, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ursulov.

Additional information

Original Russian Text © A.V. Ursulov, T.V. Chuvasheva, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 5, pp. 467–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ursulov, A.V., Chuvasheva, T.V. Influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system. Astron. Rep. 61, 468–474 (2017). https://doi.org/10.1134/S1063772917050092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917050092

Navigation