Skip to main content
Log in

Collective supernova outbursts and the growth of supershells: Observational manifestations

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Numerous supernova outbursts that are correlated in time and space are the main mechanism for the formation of powerful galactic winds and supershells of ionized hydrogen. Information about the dynamics and thermal properties of the gas in shells (bubbles) can be obtained from spectral observations, including those of optical recombination lines. The emission properties of the Hα and Hβ recombination lines and the velocity dispersion of the gas in bubbles formed by numerous supernova outbursts are studied. The appearance of the intensity vs. velocity dispersion (I(H α)−σ) diagram depends on the supernova rate and the age of the bubble. The temperature dependence of the I(Hα)/I(H β) line-intensity ratio (the Balmer decrement) can be used to obtain additional constraints on the evolutionary status of a collective remnant formed by numerous supernova outbursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Chevalier and A. W. Clegg, Nature 317, 44 (1985).

    Article  ADS  Google Scholar 

  2. I. G. Kovalenko and Yu. A. Shchekinov, Astrofiz. 23, 363 (1985).

    ADS  Google Scholar 

  3. M.-M. Mac Low and R. McCray, Astrophys. J. 324, 776 (1988).

    Article  ADS  Google Scholar 

  4. B.-C. Koo and C. F. McKee, Astrophys. J. 388, 93 (1992).

    Article  ADS  Google Scholar 

  5. A. A. Suchkov, D. S. Balsara, T. M. Heckman, and C. Leitherer, Astrophys. J. 430, 511 (1994).

    Article  ADS  Google Scholar 

  6. B. B. Nature and Yu. A. Shchekinov, Astrophys. J. Lett. 777, 12 (2013).

    Article  ADS  Google Scholar 

  7. E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. R. Astron. Soc. 446, 1703 (2015).

    Article  ADS  Google Scholar 

  8. C. Muñoz-Tuñón, G. Tenorio-Tagle, H. O. Castañeda, and R. Terlevich, Astron. J. 112, 1636 (1996).

    Article  ADS  Google Scholar 

  9. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and G. V. Smirnov-Pinchukov, Mon. Not. R. Astron. Soc. 444, 376 (2014).

    Article  ADS  Google Scholar 

  10. S. F. Sanchez, R. C. Kennicutt, A. Gil de Paz, et al., Astron. Astrophys. 538, 8 (2012).

    Article  ADS  Google Scholar 

  11. A. V. Moiseev, S. A. Pustilnik, and A. Y. Kniazev, Mon. Not. R. Astron. Soc. 405, 2453 (2010).

    ADS  Google Scholar 

  12. A. V. Moiseev and T. A. Lozinskaya, Mon. Not. R. Astron. Soc. 423, 1831 (2012).

    Article  ADS  Google Scholar 

  13. E. F. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  14. Ch. Klingenberg, W. Schmidt, and K. Waagan, J. Comp. Phys. 227, 12 (2007).

    Article  ADS  Google Scholar 

  15. E. O. Vasiliev, Mon. Not. R. Astron. Soc. 414, 3145 (2011).

    Article  ADS  Google Scholar 

  16. E. O. Vasiliev, Mon. Not._R. Astron. Soc. 431, 638 (2013).

    Article  ADS  Google Scholar 

  17. O. Gnat and A. Sternberg, Astrophys. J. Suppl. Ser. 168, 213 (2007).

    Article  ADS  Google Scholar 

  18. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  19. R. S. Sutherland and M. A. Dopita, Astrophys. J. Suppl. Ser. 88, 253 (1993).

    Article  ADS  Google Scholar 

  20. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  21. D. Hollenbach and C. F. McKee, Astrophys. J. 342, 306 (1989).

    Article  ADS  Google Scholar 

  22. S. A. Kaplan and S. B. Pikel’ner The Physics of the Interstellar Medium (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  23. H. Yang, Y.-H. Chu, E. D. Skillman, and R. Terlevich, Astron. J. 112, 146 (1996).

    Article  ADS  Google Scholar 

  24. E. O. Vasiliev, A. V. Moiseev, and Yu. A. Shchekinov, Balt. Astron. 24, 213 (2015).

    ADS  Google Scholar 

  25. E. O. Vasiliev and Yu. A. Shchekinov, Astrophysics 60, 1 (2017).

    Article  ADS  Google Scholar 

  26. V. S. Avedisova, Sov. Astron. 15, 708 (1971).

    ADS  Google Scholar 

  27. J. Castor, R. McCray, and R. Weaver, Astrophys. J. Lett. 200, 107 (1975).

    Article  ADS  Google Scholar 

  28. E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. R. Astron. Soc. (in press).

  29. N. Yadav, D. Mukherjee, P. Sharma, and B. B. Nath, Mon. Not. R. Astron. Soc. 465, 1720 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Shchekinov or E. O. Vasiliev.

Additional information

Original Russian Text © Yu.A. Shchekinov, E.O. Vasiliev, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 4, pp. 328–332.

Based on a talk presented at the international conference “All-Wave Astronomy. Shklovskii-100” in honor of the 100th anniversary of the birthday of I.S. Shklovskii (Moscow, Russia, June 20–22, 2016). Printed by recommendation of the Scientific Organizing Committee of the conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekinov, Y.A., Vasiliev, E.O. Collective supernova outbursts and the growth of supershells: Observational manifestations. Astron. Rep. 61, 337–341 (2017). https://doi.org/10.1134/S1063772917040163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917040163

Navigation