Skip to main content
Log in

A toroidal vortex field as an origin of the narrow mass spectrum of neutron stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The evolution and collapse of a gaseous, self-gravitating sphere in the presence of an internal massive toroidal vortex analogous to the vortex created by the toroidal magnetic field of the Sun is considered. When thermal pressure is taken into account, for sufficiently high masses, the instability is preserved even for a polytropic index γ < 4/3. In the case of a degenerate gas, the evolution of the electrons and neutrons differs appreciably. In the ultrarelativistic limit, an interval of stablemasses arises in a neutron gas, between a minimum mass that depends on the circulation velocity in the vortex and the critical mass for the formation of a black hole. This suggests toroidal vortex fields as a possible physical origin for the observed narrow spectrum of neutron-star masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S.Monin, Sov. Phys. Usp. 23, 594 (1980).

    Article  ADS  Google Scholar 

  2. E. R. Priest, SolarMagnetohydrodynamics (Reidel, London, 1982; Mir, Moscow, 1985).

    Google Scholar 

  3. H. Lamb, Hydrodynamics (Cambridge Univ., Cambridge, 1993).

    MATH  Google Scholar 

  4. P. G. Saffman, Vortex Dynamics, CambridgeMonographs onMechanics (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  5. K. Yu. Bliokh and V. M. Kontorovich, Astron. Lett. 29, 724 (2003).

    Article  ADS  Google Scholar 

  6. Ya. B. Zeldovich and I.D. Novikov, Gravitation Theory and Stellar Evolution (Moscow, Nauka, 1971) [in Russian].

    Google Scholar 

  7. S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Mir, Moscow, 1985; Wiley, New York, 1983).

    Book  Google Scholar 

  8. E. Yu. Bannikova and V. M. Kontorovich, in Proceedings of the 2nd Gravitational Conference on Gravitation, Cosmology, and Relativistic Astrophysics (Khar’kov, 2003), p. 70.

    Google Scholar 

  9. E. Yu. Bannikova, K. Yu. Bliokh, and V. M. Kontorovich, in JENAM 2003: New Deal in European Astronomy: Trends and Perspectives (Budapest, 2003), p. 12.

    Google Scholar 

  10. E. Yu. Bannikova, K. Yu. Bliokh, and V. M. Kontorovich, Visn. Astron. Shkoli 3, 100 (2004).

    Google Scholar 

  11. A. M. Cherepashchuk, Phys. Usp. 45, 896 (2002).

    Article  ADS  Google Scholar 

  12. A. M. Cherepashchuk, Phys. Usp. 57, 359 (2014).

    Article  ADS  Google Scholar 

  13. K. Yu. Bliokh and V. M. Kontorovich, J. Exp. Theor. Phys. 96, 985 (2003).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  15. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

    Book  Google Scholar 

  16. G. S. Bisnovatyi-Kogan, Relativistic Astrophysics and Physical Cosmology (KrASAND URSS, Moscow, 2011) [in Russian].

    Google Scholar 

  17. L. L. Kitchatinov, Phys. Usp. 48, 449 (2005).

    Article  ADS  Google Scholar 

  18. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instrumentation, and Results (KrASAND URSS, Moscow, 2013) [in Russian].

  19. V. Bjerknes, Astrophys. J. 64, 93 (1926).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  21. K. Makishima, T. Enoto, S. Hiraga, T. Nakano, K. Nakazawa, S. Sakurai, M. Sasano, and H. Murakami, Phys. Rev. Lett. 112, id.171102 (2014).

    Article  ADS  Google Scholar 

  22. E. N. Lorentz, The Nature and Theory of the General Circulation of the Atmosphere (World Meteorological Organization, Geneva, Switzerland, 1967).

    Google Scholar 

  23. V. P. Ruban, J. Exp. Theor. Phys. 119, 83 (2014).

    Article  ADS  Google Scholar 

  24. E. Yu. Bannikova, K. Yu. Bliokh, and V. M. Kontorovich, in Nonlinear Waves, Collection of Articles (Inst. Prikl. Fiz. RAN, Nizh. Novgorod, 2005), p. 243 [in Russian].

    Google Scholar 

  25. N. A. Featherstone and M. S. Miesch, Astrophys. J. 804, id. 67 (2015).

    Article  ADS  Google Scholar 

  26. R. D. Simitev and F. H. Busse, Astrophys. J. 749, id. 9 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kontorovich.

Additional information

Original Russian Text © V.M. Kontorovich, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 3, pp. 285–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontorovich, V.M. A toroidal vortex field as an origin of the narrow mass spectrum of neutron stars. Astron. Rep. 60, 322–331 (2016). https://doi.org/10.1134/S1063772916030094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916030094

Keywords

Navigation