Skip to main content
Log in

Thin-Film Solid State Lithium-Ion Batteries of the LiCoC2/LiPON/Si@O@Al System

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Experimental samples of solid-state thin-film lithium-ion batteries (STLIBs) of the LiCoO2/LiPON/Si@O@Al electrochemical system are manufactured using traditional mask technology by radio frequency magnetron sputtering of both the electrodes and electrolyte. The obtained samples have a specific capacity corresponding to the modern published data on industrial STLIB samples. The developed STLIB samples are capable of long (about 1000 cycles) cycling with an acceptable loss of capacity, provided that the charging voltage is limited to 3.7 V. Exceeding the charging voltage leads to an increase in the charging capacity, but to a noticeable acceleration of degradation during cycling. At cycling currents over 20 μA/cm2, the inverse proportionality between the current and the discharge capacity is observed, which is determined by the delayed solid-phase diffusion of lithium. With a decrease in the cycling current, the discharge capacity approaches the theoretical capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363.

    Article  Google Scholar 

  2. Patil, A., Patil, V., Shin, D.W., Choi, J.-W., Paik, D.-S., and Yoon S.-J., Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 2008, vol. 43, p. 1913.

    Article  Google Scholar 

  3. Souquet, J.L. and Duclot, M., Thin film lithium batteries, Solid State Ionics, 2002, vol. 148, p. 375.

    Article  Google Scholar 

  4. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., and Evans, C.D., Thin-film lithium and lithium-ion batteries, Solid State Ionics, 2000, vol. 135, p. 33.

    Article  Google Scholar 

  5. Jones, S.D. and Akridge, J.R., Thin film rechargeable Li batteries, Solid State Ionics, 1994, vol. 69, p. 357.

    Article  Google Scholar 

  6. Dudney, N.J., Thin film micro-batteries, Electrochem. Soc. Interfaces, 2008, vol. 3, p. 44.

    Article  Google Scholar 

  7. Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Xiaohua, Yu., and Zuhr, R.A., Thin-film recharge-able lithium batteries, J. Power Sources, 1995, vol. 54, p. 58.

    Article  Google Scholar 

  8. Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc., 1996, vol. 143, p. 3203.

    Article  Google Scholar 

  9. Kulova, T.L., Skundin, A.M., and Andreev, V.N., Gryzlov, D.Yu., Mironenko, A.A., Rudyi, A.S., Gusev, V.N., and Naumov, V.V., Cyclic voltammetry studies of silicon-aluminum thin-film electrodes synthesized in the presence of oxygen, Russ. J. Electrochem., 2015, vol. 51, p. 1157.

    Article  Google Scholar 

  10. Kulova, T.L., Mironenko, A.A., Skundin, A.M., Rudy, A.S., Naumov, V.V., and Pukhov, D.E., Study of silicon composite for negative electrode of lithium-ion battery, Int. J. Electrochem. Sci., 2016, vol. 11, p. 1370.

    Google Scholar 

  11. Vasilev, S.V., Lebedev, M.E., Mazaletskii, L.A., Metlitskaya, A.V., Mironenko, A.A., Naumov, V.V., Novozhilova, A.V., Rudyi, A.S., and Fedorov, I.S., Development of the technology of magnetron sputtering deposition of LiPON films and investigation of their characteristics, Russ. Microelectron., 2017, vol. 46, p. 424.

    Article  Google Scholar 

  12. Rudyi, A.S., Vasil’ev, S.V., Metlitskaya, A.V., Novozhilova, A.V., Churilov, A.B., Lebedev, M.E., Mironenko, A.A., Naumov, V.V., and Fedorov, I.S., An experimental examination of thin films of lithium phosphorus oxynitride (a solid electrolyte), Tech. Phys. Lett., 2017, vol. 43, p. 503.

    Article  Google Scholar 

  13. Lithium Batteries: Science and Technology, Nazri, G.-A. and Pistoia, G., Eds., New York: Springer, 2009.

  14. Kulova, T.L. and Skundin, A.M., A simple method to diagnose the causes of electrode degradation when cycling lithium-ion batteries, Elektrokhim. Energet., 2011, vol. 11, p. 171.

    Google Scholar 

  15. Galus, Z., Teoretyczne Podstawy Elektroanalizy Chemicznej, Warszawa: Panstwowewidawnictwonaukowe, 1971.

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of state assignment no. 0856-2020-0006 of Demidov Yaroslavl State University using the equipment of the Center for Collective Use “Diagnostics of micro- and nanostructures.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Rudy or Yu. S. Tortseva.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudy, A.S., Mironenko, A.A., Naumov, V.V. et al. Thin-Film Solid State Lithium-Ion Batteries of the LiCoC2/LiPON/Si@O@Al System. Russ Microelectron 50, 333–338 (2021). https://doi.org/10.1134/S106373972105005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106373972105005X

Navigation